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We developed and thoroughly examined a model of longitudinal vibrational resonance in bar-shaped sedi-
mentary rocks; these materials exhibit memory that originates from an essential asymmetry in processes of
rupture and recovery of intergrain and interlamina cohesive bonds. The theory relies on an appropriate isolation
and an adequate formalization of two mutually dependent subsystems, namely, a subsystem of ruptured bonds
and a subsystem of internal longitudinal displacements. The subsystem of ruptured bonds is shown to be of a
soft-ratchet type, so that its response to an alternating internal stress is characterized by broken symmetry and
appears as nonzero long-term temporal and spatial changes in the concentration of ruptured bonds. The internal
stress is generated by an alternating external drive acting both directly through the subsystem of longitudinal
displacements and indirectly through temporal and spatial modifications of Young’s modulus due to changes in
concentration of ruptured bonds. The scheme reproduces the main experimental effects by using the simplest
linear form of attenuation in an elastic subsystem and realistic assumptions about the stress-strain relation. In
particular, it correctly describes: hysteretic behavior of a resonance curve on both its upward and downward
slopes; linear softening of resonant frequency with increase of driving level; gradualsalmost logarithmicd
recoverysincreased of resonant frequency at low dynamical strains after the sample was conditioned by high
strains; and temporal relaxation of response acceleration amplitude at fixed frequency. These are the most
interesting observations typical of forced longitudinal oscillations of sandstone bars in the nonlinear regime.
Further, we are able to trace how water saturation enhances the hysteresis and simultaneously decreases the
quality factor because of an increase in equilibrium concentration of ruptured cohesive bonds. We also predict
theoretically a dynamical effect analogous to the widely known quasistatic effect of hysteresis with discrete
send-pointd memory.
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I. INTRODUCTION

Sedimentary rocks, particularly sandstones, are distin-
guished by their grain structure1–3 in which the core of each
grain is much harder than the intergrain cementation
material.4 Imperfect intergrain cementation partially appears
as porosity,1–3 a property governing rock permeability that is
essential, e.g., for petroleum production.1,2 In addition, po-
rosity facilitates penetration of water into areas of intergrain
contacts1,2 causing a dramatic impact on elastic moduli5–7

and seismic dissipation factors.5–8 The peculiarities of grain
and pore structures give rise to a variety of remarkable non-
linear mechanical properties demonstrated by rocks, both at
quasistatic and alternating dynamic loading. Thus, the hys-
teresis earlier established for the stress-strain relation in
samples subjected to quasistatic loading-unloading cycles9,10

has also been discovered for the relation between accelera-
tion amplitude and driving frequency in bar-shaped samples
subjected to an alternating external drive that is frequency-
swept through resonance.11–13At strong drive levels there is
an unusual, almost linear decrease of resonant frequency
with strain amplitude,12,14,15 and there are long-term relax-
ation phenomena13,16 such as nearly logarithmic recovery

sincreased of resonant frequency after the large conditioning
drive has been removed.15

The fragmentary understanding of these observations15,17

has stimulated us to look into the whole problem, usually
characterized as “slow dynamics,” more systematically and
to propose a closed-form theory. This is based upon an ex-
plicit, physically motivated formalization of a sandstone bar
system as two coupled nonlinear subsystems, one of which
breaks the symmetry of system response to an alternating
external drive and acts as a sort of soft ratchet or leaky
diode.18 We specify these subsystems as a fast subsystem of
longitudinal displacements and a slow subsystem of ruptured
intergrain and/or interlamina cohesive bonds.

In this paper we present a detailed development of a
model,18 and we inspect its ability to explain numerous ex-
perimental observations seen in forced longitudinal oscilla-
tions of sandstone bars. We demonstrate that a broad set of
experimental data can be understood as various facets of the
same internally consistent approach. Furthermore, the sug-
gested theory will be shown to predict the dynamical realiza-
tion of hysteresis with end-point memory, figuratively resem-
bling its well-known quasistatic prototype9,10 ssee also more
recent publications4,11d.
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II. SUBSYSTEM OF LONGITUDINAL DISPLACEMENTS

A reliable probing method widely applied in resonant bar
experiments is to drive a horizontally suspended cylindrical
sample with a piezoelectric force transducer cemented be-
tween one end of the sample and a massive backload, and to
simultaneously measure the sample response with a light-
weight accelerometer attached to the opposite end of the
bar.13,15In this case the alternating strain configuration inside
the bar is principally longitudinal, and has to be treated as
kinematically excited.19 The relevant boundary conditions
for the field of longitudinal displacementsu are as follows:

usx = 0utd = DstdcosFw +E
0

t

dtvstdG , s1d

ssx = Lutd + g
]2u

]x ]t
sx = Lutd = 0, s2d

where t is time and x denotes the running longitudinal
Lagrange coordinate of the bar withx=0 andx=L marking
its driven and free ends, respectively. As a rule, the driving
amplitudeDstd is set to be basically constant except for the
moments when the driving device is switched on, is switched
into another constant driving level, or is switched off,
whereas the time dependence of cyclic driving frequency
vstd is prescribed by the type of frequency sweep. Another
kind of experiment where the parts played by the driving
amplitudeDstd and the driving frequencyvstd are reversed
would also be informative.

For the evolution equation for the field of longitudinal
displacementssreferred to also as the elastic subsystemd we
write the most general form

r
]2u

]t2
=

]s

]x
+

]

]x
F ]F

]s]2u/]x]tdG s3d

evaluating its content step-by-step. Thus, the dissipative
function F must be some even function of strain velocity
]2u/]x]t in order to ensure both the positiveness and the
internal character of dissipation. Here we restrict ourselves to
the Stokes internal friction20 associated with the dissipative
function

F = sg/2df]2u/]x]tg2. s4d

The quantitiesr andg are, respectively, the mean density of
sandstone and the coefficient of internal friction in an elastic
subsystem. In what follows, the dependences ofr and g in
Eqs. s3d and s4d on temperatureT, water saturations, and
strain ]u/]x will be ignored. The stress-strain relation
ss–]u/]xd we adopt in the form

s =
E sechh

sr − adfcoshh ]u/]x + 1ga+1

−
E sechh

sr − adfcoshh ]u/]x + 1gr+1 s5d

which at r .a.0 allows one to block the bar compressibil-
ity at strain]u/]x tending toward +0−sechh. Thus, the pa-
rameter coshh is assigned for a typical distance between the

centers of neighboring grains divided by the typical thick-
ness of intergrain cementation contact, while the exponentsr
and a characterize the repulsive and the attractive parts of
intergrain interaction, respectively. In other words, we ap-
proximate the potential of grain-grain interaction by the em-
pirical Mie potential. At small strainsu]u/]xu!sechh we
obtain

s

E]u/]x
< 1 − 1

2sr + a + 3dcoshh ]u/]x

+ 1
6sr2 + ra + a2 + 6r + 6a + 11dscoshh ]u/]xd2

s6d

and, hence, the parametersr, a, coshh are seen to com-
pletely specify the nonlinear corrections to Hooke’s law, pro-
vided that a direct influence of strain]u/]x on Young’s
modulusE is absent. Meanwhile, the indirect effect of strain
on Young’s modulus, namely the impact mediated by the
concentrationc of ruptured intergrain cohesive bonds, will
be incorporated in our theory as the main source of all non-
trivial phenomena mentioned in the Introduction. We shall
refer to this subject in the next section.

III. SUBSYSTEM OF RUPTURED COHESIVE BONDS

Any dynamical model dealing exclusively with a single
subsystem of longitudinal displacements is incapable of re-
producing the entire suite of phenomena exhibited by sand-
stones in resonant bar experiments without invoking specu-
lative assumptions se.g., temporal evolution of the
amplitude-frequency characteristic17d that does not follow
from the original equation or without incorporating auxiliary
quantitiesse.g., maximum strain excursion17d that can be jus-
tified only for the quasistatic theory. When holding this po-
sition one is unable to depart from an incomplete, fragmen-
tary description. At best, one may have to appeal to a
hypothetical slow subsystem only in a rather artificial
way,15,17 i.e., without explicit specification of all relevant
sdynamic or kineticd independent variables and their govern-
ing evolution equations, not to mention the mutual feedback
between the slow subsystem and the fast elastic one.

We overcome the difficulties of single-subsystem model-
ing by introducing along with the fast elastic subsystem a
slow subsystem of ruptured intergrain cohesive bonds via
their concentrationc. At any given stresss stensile or com-
pressived the quantityc must evolve to its stress-dependent
equilibrium valuecs. In order to achieve reliable consistency
between theory and experiment such an evolution has to be
treated as being nearly logarithmic rather than exponential
on the one hand and as being sensitive to the sign of the
applied stress on the other. Both of these aspects can be
readily included in the concept of blended kinetics which is
believed to find more or less natural physical justification in
consolidated materials. The idea consists of presenting the
actual concentration of defectsc as some reasonable super-
position of constituent concentrationsg, where each particu-
lar g is proved to obey rather simple kinetics.

We start with considering a set of constituent concentra-
tions. Every particular concentrationg in this set is assumed
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to evolve to its stress-dependent equilibrium valuegs with
the velocity]g/]t that in lowest order approximation should
be proportional to the differencegs−g. Thus, atg.gs the
ruptured bonds are becoming restoreds]g/]t,0d while at
g,gs the unruptured bonds are becoming brokens]g/]t
.0d. Denoting the restoring rate asm=m0 exps−U /kTd and
the rupturing rate asn=n0 exps−W/kTd we can formalize the
earlier statements in terms of the following kinetic equation:

]g/]t = − fmusg − gsd + nusgs − gdgsg − gsd, s7d

whereU andW are the activation barriers for the processes
of bond restoration and bond rupturation, respectively,k is
the Boltzmann constant, anduszd designates the Heaviside
step function.

There is a question whether the ratesm and n should be
the same or different and why. We argue that the parameters
m andn have to differ substantially inasmuch as the volume
attributed to generate a single crack turns out to be essen-
tially mesoscopic although confined to an intergrain space.

Indeed, under a tensile load there are an immense number
of spatial ways for a mesoscopic intergrain cementation con-
tact to be broken with the same basic result: creation of an
intergrain crack. Here we understand that any relevant mac-
roscopic characteristic of rock is bound to be insensitive to
the particular position of a crack between given neighboring
grains but should essentially depend on the cumulative area
of cracks per unit volume which can serve as an appropriate
measure for the concentration of defects. Similarly, there are
various ways for an already existing crack in equilibrium to
be further expanded when surplus tensile load is applied.
However, under compressive load a crack, once formed, has
only one spatial way to be annihilated or contracted. These
are the key observations that imply a large disparityn0
@m0 between the ratesn0 andm0 regardless of the cohesive
properties of the cementation material. Moreover, because of
possible water intercalation and/or fine fragmentation of ce-
mentation material between opposite faces of a crack, we can
expect the typical value ofU to exceed that ofW. In combi-
nation all these factors might sustain an even greater dispar-
ity n@m between the actual ratesn andm of defect creation
and defect annihilation that may amount to many orders.
This conclusion, which relies on the mesoscopic scale of the
structural elements involved, finds a natural analogy on the
macroscopic level when samples once having been broken
remain broken practically forever.

Up to now we specified only a particular constituent con-
centration of defectsg that can be labeled by the pair of fixed
activation parametersU andW. In reality, any small but still
macroscopic volume of sandstone contains a huge variety of
structural elements distinguished by size, composition, natu-
ral cleavage, etc. As a result, activation barriers for the pro-
cess of cohesion restorationU and the process of cohesion
ruptureW have to be distributed over some ranges, which we
denote asU0øUøU0+U+ and W0øWøW0+W+, respec-
tively. Although the types of these distributions are unknown,
their characteristicsU0, U+ andW0, W+ must be insensitive
to a particular choice of bar’s cross section in accordance
with specimen homogeneityssimilarityd on the macroscopic
scale. Of course, the very number of these characteristics is

insufficient to specify the set of constituent concentrations
constructively, i.e., we still lack a definite recipe for how
swith what weightd any constituent concentration of defectsg
should contribute to the actualsaveragedd concentration of
defectsc. Thus, to proceed further some additional assump-
tions about the distributions of activation barriers must be
added. For the sake of definiteness we approximate the bar-
riers U and W as distributed independently and uniformly
within the intervals given earlier. Thus, the relative number
of restoration barriers in the intervaldU surroundingU at W
being fixed is taken to beusU−U0dusU0+U+−UddU/U+,
while the relative number of rupturation barriers in the
interval dW surroundingW at U being fixed is taken to be
usW−W0dusW0+W+−WddW/W+. As a consequence the ac-
tual concentration of ruptured cohesive bondsc is deter-
mined by the constituent concentrationg via the formula

c =
1

U+W+
E

U0

U0+U+

dUE
W0

W0+W+

dW·g. s8d

This expression does not contradict the next assumption

gs = cs s9d

relating the equilibrium value of actual concentration of rup-
tured bondscs to the equilibrium value of constituent con-
centration of ruptured bondsgs, where bothcs and gs are
prescribed by the stresss. As a matter of fact, only the
quantitycs might find a legitimate place in standard thermo-
dynamical estimations,21–23 whereas in dealing withgs we
must lean upon more or less plausible conjecture, e.g. as
established by formulas9d.

According to Kosevich21,22 the equilibrium concentration
of defects associated with a stresss is given by the expres-
sion

cs = c0 expsvs/kTd, s10d

where the parameterv.0 stands for a typical volume ac-
counting for a single defect and characterizes the intensity of
dilatation. Although formulas10d should supposedly be ap-
plicable to the ensemble of microscopic defects in crystals, it
was derived in the framework of continuum thermodynamic
theory that does not actually need any specification of either
the typical size of elementary defect or the particular struc-
ture of the crystalline matrix. For this reason we believe it
should also work for an ensemble of mesoscopic defects in
consolidated materials, provided that for a single defect we
shall understand some elementary rupture of intergrain cohe-
sion. The equilibrium concentration of defects in an un-
strained, completely recovered barc0 has to be some func-
tion of temperatureT and water saturations. The particular
character of these dependences does not follow from first
principles and needs to be extracted from experiments.

At this point we introduce a phenomenological relation-
ship between defect concentrationc and Young’s modulusE.
Intuition suggests thatE must be some monotonically de-
creasing function ofc, which can be expanded in a power
series with respect to a small deviation ofc from its un-
strained equilibrium valuec0. In the lowest approximation
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we can drop all powers except the zeroth and first and as a
result safely rearrange the required relation into the form

E = s1 − c/ccrdE+. s11d

Hereccr andE+ are the critical concentration of defects and
the maximum possible value of Young’s modulus, respec-
tively. Both of these parameters we take to be independent of
temperature and water saturation.

According to relationships11d the actual concentration of
defectsc is incorporated into the evolution equation for the
elastic subsystems3d as normalized by its critical valueccr.
For this reason there is no need to supply the quantitiesc, cs,
andccr by any particular units, though the units must be the
same for all three quantities. As for the units of the running
and equilibrium constituent concentrationsg andgs it is suf-
ficient to know only their relationship to the units of actual
concentration given by expressions9d.

At constant load the kinetic Eq.s7d ensures that the con-
centrationc tends to its equilibrium valuecs given by for-
mula s10d and as a consequence Young’s moduluss11d at-
tains the magnitude

Es = f1 − sc0/ccrdexpsvs/kTdgE+. s12d

It is worth noticing that the resulting functional dependence
of Es on s almost exactly matches the experimentally estab-
lished fitting formula for elastic moduli as a function of an
applied loadP,−s.0 ssee, e.g., Ref. 24, and references
thereind. Furthermore, relations12d taken at zero stresss
=0 allows us to reconstruct the temperature and saturation
dependences of the unstrained equilibrium concentration of
defects c0 using available experimental data for Young’s
modulusE0 in unstrained, recovered samples. Thus, if we
take into account the Sutherland temperature
extrapolation25,26 and analyze temperature-dependent data at
zero saturation27 plus saturation-dependent data at room
temperature7 sselected for Berea sandstoned, we are able to
suggest the following fitting formula:

c0 = ccrS T

Tcr
D2Fcosh2 a − expS−

bs

1 − s
Dsinh2 aG , s13d

where saturations varies within the interval 0øsø1. The
fitting parameters relevant for Berea sandstone are as follows
Tcr=1475 K, cosh2 a=16,b=10. At sÞ0 our approximation
is expected to work at least within the temperature range
between irreversible damage thresholds of sedimentary
rocks, namely between the freezing-point of pore water
s<273 Kd and the baking point of interstitial clays
s<345 Kd.

The significant issue of our approach is contained in the
kinetic Eq.s7d that can be applied to both static and dynamic
regimes of external load. In the latter case, however, forcs

and gs we must consider the would-be equilibrium quanti-
ties, i.e., quantities given by formulass10d ands9d where the
stresss is taken to be dynamical.

At small dynamical stressesusu!kT/v the exponent
expsvs /kTd dominating the expressions10d for cs can be
readily approximated by the two first terms in its expansion.
Because of relations9d a similar approximation applies for

gs. Nevertheless, this fact does not indicate a zero-valued,
long-term correction tog0 in the solutiong of the kinetic Eq.
s7d as might be roughly expected. On the contrary, the great
disparityn@m between the rate of defect creationn and the
rate of defect annihilationm turns out to provide the physical
mechanism that breaks the symmetry of system response to
an alternating external drive and acts as a sort of soft ratchet
or leaky diode. It is the core of this modeling.

In contrast, earlier theories of inelastic relaxation devel-
oped for crystalline solids23 rely upon a symmetric form of
the kinetic equationsscorresponding tom;n in our nota-
tionsd and do not assume the equilibrium value of the inter-
nal relaxation parameterscorresponding togs in our nota-
tionsd to be driven dynamically. Also, earlier theories of
crack formation28 differ from our approach in that they ne-
glect the possibility of crack recuperationsi.e., they assume
m=0 in our notationsd and do not incorporate a variable con-
centration of defects into the right-hand side of the appropri-
ate kinetic equation.

Summarizing the content of the second and third sections,
we have formulated the principal theoretical propositions of
our model and have formalized them in terms of two
coupled, essentially nonlinear subsystems. First, we have
suggested a dynamical equation for the field of longitudinal
displacementss3d with the appropriate specification of the
dissipative functions4d, the stress-strain relations5d, and the
impact of defect concentration on Young’s moduluss11d.
Second, we have developed a soft-ratchet-type kinetic equa-
tion for the constituent concentration of defectssruptured
intergrain cohesive bondsd s7d with the appropriate specifica-
tions of stress-guided, would-be equilibrium constituent con-
centration of defectss9d and would-be equilibrium actual
concentration of defectss10d and have adopted a reasonable
relation between the constituent concentration and the actual
concentration of ruptured intergrain cohesive bondss8d. We
also have presented boundary conditions for the field of lon-
gitudinal displacementss1d and s2d allowing us to formalize
the effect of the transducer on the whole bar system.

The only thing remaining to be specified is the initial
conditions. These must depend on the sample’s prehistory.
Thus, for the unstrained, completely recovered bar the initial
conditions are written as follows:

usxut = 0d = 0,
]u

]t
sxut = 0d = 0, s14d

gsxut = 0d = c0, s15d

where 0,x,L.

IV. SOFT-RATCHET KINETICS UNDER AN
ALTERNATING DRIVE

In this section we illustrate two different kinetic regimes
of defect creation and annihilation under an alternating drive
that can be the basic to qualitative understanding of experi-
mental results as well as their computerized replicas. For this
purpose we introduce a quantitysthe surplus constituent con-
centrationd
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G ; g − g0 s16d

that measures the excessG.0 or shortageG,0 of defects
relative to the unstrained backgroundg0, and we approxi-
mate the impact of the dynamic subsystem onto the kinetic
subsystem by a single harmonic

Gs ; gs − g0 = A sinsvt + dd, s17d

whereA andd are some functions of the longitudinal coor-
dinatex. Their particular forms do not need to be specified
because at each fixedx the quantityG obeys the ordinary
differential equation

dG/dt = − fmusG − Gsd + nusGs − GdgsG − Gsd. s18d

Note, however, that to lowest order the amplitudeA is pro-
portional to the amplitude« of strain

]u/]x = « sinsvt + dd s19d

taken in the same single mode approximation. The propor-
tionality coefficientvc0E/kT can be readily extracted from
expressionss17d and s19d by using the approximate stress-
strain relations=E]u/]x and formulass9d and s10d for gs

andcs. Here for simplicity we ignore the time dependence of
Young’s modulus through the total concentration of defects.

Starting from the zeroth valueGst=0d=0 the kinetic Eq.
s18d and the sinusoidal drives17d cause surplus constituent
concentrationG to grow in each cycle in a nearly steplike
fashion form!n&v /2p sFig. 1d. Time intervals of fast in-
crease controlled by raten are determined from the inequal-
ity

A sinsvt + dd − Gstd . 0 s20d

whereas time intervals of slow decrease controlled by ratem
are determined from the opposite inequality

A sinsvt + dd − Gstd , 0. s21d

A time interval of increase is followed by a time interval of
decrease and vice versa yielding a net full step in each cycle
2p /v.

Although the kinetic Eq.s18d could be integrated analyti-
cally at every time interval where either inequalitys20d or
s21d holds, it is impractical to match such piecewise solu-
tions into concise expression suitable for qualitative analysis.
Instead, even a quick look at the computer solutionssFig. 2d
is sufficient to evaluate the meanstime-averagedd magnitude
H of the steady-state solution forG in comparison with the
amplitudeA as well as to estimate the effective ratel of
cyclic buildup of surplus constituent concentrationG under
an oscillating load in comparison with the raten of mono-
tonic growth ofG under a constant tensile load. In preparing
Fig. 2 we took the ratem to coincide with its maximum value
m0 exps−U0/kTd=1 s−1, which in Sec. V will be adopted for
interpreting experimental results on slow dynamics. The fre-
quencyf ;v /2p was chosen to be 4000 Hz, and the raten
was tested at four essentially different values 40, 400, 4000,
and 40 000 s−1 sFig. 2, curves 1, 2, 3, and 4, respectivelyd.
All four curves strongly indicate that fornù0.01f the effec-
tive ratel of cyclic buildup does not drop more than five or
six times below the raten. Moreover, atnù0.01f the ratio
H /A always exceeds value of 0.8 and rapidly approaches
unity as the ration / f increases. Another significant observa-
tion consists of the almost total suppression of periodical
fluctuations of steady-state solutionG around its mean value
H sFig. 3d.

The results of the previous paragraph can be readily ap-
plied to the case when the amplitudeA is not constant but
grows with time sufficiently slowly such that 0,«̇ /«!l
,0.2n; the overdot denotes the derivative with respect to
time t. Then at n*0.01f we can safely treat the surplus

FIG. 1. Normalized solutionG/A of the soft-ratchet kinetic Eq.
s18d with sinusoidal stimulations17d at m=1 s−1, n=4000 s−1, f
;v /2p=4000 Hz,d=0, and the initial conditionGst=0d=0 ssolid
steplike lined. The dashed line indicates the normalized sinusoidal
stimulationGs /A=sinvt. Time along the abscissa is normalized to
the oscillation period 1/f.

FIG. 2. Normalized solutionG/A of the soft-ratchet kinetic Eq.
s18d under sinusoidal stimulations17d. Curves j =1,2,3,4 corre-
spond to successively higher rates of defect creationn j =4·10j s−1

with all other parameters from Fig. 1 being preserved. Time on the
abscissa is normalized to the inverse rate of defect creation 1/n
separately for each curve.
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defect concentrationG as a time dependent quantity that ef-
fectively tracks amplitudeA. There is every reason to believe
that both the above requirements are fulfilled in resonant bar
experiments as frequency sweeps toward a resonance. Thus,
the inequality 0,«̇ /«!0.2n is maintained by the fact that
typical sweeps around resonance13 are unable to sustain the
rate u«̇u /« by more than 0.5 s−1. As for the inequality 0.01f
&n, it seems to be in line with our hypothesis of strong
inequalitym!n secured by many orders as given in Sec. III.

We now inspect the regime of slow relaxation in the sub-
system of intergrain ruptured bonds. This regime occurs after
the surplus constituent concentrationG has been pumped to
some steady-state magnitudeB and then the conditioning
oscillating drive is drastically reduced at timet= tc. In this
case, i.e., att. tc, the strong inequalityB@A holds, and the
elastic subsystem serves only for probing the resonant fre-
quency, while its impact on the subsystem of ruptured bonds
can be totally neglected. Thus, we omit the termGs through-
out the kinetic Eq.s18d and obtain

dG/dt = − mG s22d

bearing in mind that the regime of interest starts att= tc with
Gst= tcd=B. Here the quantityB is estimated to be

B = c0FexpSvs+

kT
D − 1G s23d

wheres+.0 stands for the maximum stress determined by
the amplitude of stress oscillations under dynamical condi-
tioning.

The approach just formulated is undoubtedly valid to de-
scribe the process of relaxation after tensile static condition-
ing whens+ should be understood as the positive end-point
stress. We expect it also could be applied to treat relaxation
phenomena after an abrupt thermal disturbance provideds+
is identified with some effective rupturating stress predeter-
mined by the absolute value of thermal shock.

The kinetic Eq.s22d for surplus constituent concentration
G yields an exponential decay

G = B expf− mst − tcdg s24d

at tù tc. However, this by no means causes the actual surplus
of defect concentrationc−c0 to diminish exponentially. On
the contrary, inserting the solutions24d into the formulas8d
with the use of definitions16d we easily obtain

c = c0 +
B

x
hE1ft exps− xdg − E1stdj. s25d

Here

t ; m0 exps− U0/kTdst − tcd s26d

denotes a unitless time, whereas

x ; U+/kT s27d

determines a unitless width of energy interval occupied by
the distribution of activation barriers for the process of co-
hesion restoration. Finally

E1szd =E
1

` dy

y
exps− zyd s28d

designates the integral exponential function.29

Despite its name,E1szd initially behaves logarithmically
as clearly seen in its analytic expansion forz,129

E1szd = − C − ln z− o
n=1

`

s− 1dn zn

n ·n!
s29d

whereC.0.577 215 7 stands for the Euler-Mascheroni con-
stant. In its final stagesz.1, however, use of the asymptotic
series29

E1szd =
exps− zd

z F1 + o
n=1

`

s− 1dnn!

znG s30d

turns out to be appropriate.
We apply expansionss29d and s30d to the most plausible

case of expsxd@1 and approximate the difference
E1ft exps−xdg−E1std controlling the temporal restoration
of defect concentrations25d by the following piecewise
formula:

E1ft exps− xdg − E1std

. 5
x − t + t2/4 + t exps− xd at t , j−

x − C − ln t + t exps− xd at j− ø t ø j+ex

expf− t exps− xdg
t exps− xd

at j+ex , t. 6
s31d

Here the constantsj−.1.391 099 0 andj+.0.928 630 6 are
determined as the solutions of transcendental equations

− j− + j−
2/4 = −C − ln j− s32d

and

FIG. 3. Normalized solutionG/A of the soft-ratchet kinetic Eq.
s18d at an essentially steady stage of its evolutionssolid lined. The
dashed line represents the mean valueH /A of the normalized
steady-state solution. Conditions used for calculations of curve 2
from Fig. 2 are preserved. Time along the abscissa is normalized to
the oscillation period 1/f.
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− C − ln j+ + j+ =
exps− j+d

j+
, s33d

respectively. Equationss32d and s33d supply matching con-
ditions to ensure that the piecewise representations31d will
be a continuous function at pointst=j− and t=j+ expsxd,
respectively. The larger the inequality expsxd@1, the longer
becomes the interval of almost logarithmic time dependence
in formula s31d.

Formulass23d, s25d, and s31d substituted into the linear
relationships11d between Young’s modulusE and the con-
centration of defectsc allow us to analytically reproduce the
slow, nearly logarithmic recoverysincreased of Young’s
modulus

E = S1 −
c0

ccr
DE+ − E+

c0

ccr
FexpSvs+

kT
D − 1G

3H1 − C
kT

U+
−

kT

U+
lnFm0 expS−

U0

kT
Dst − tcdG

+
kT

U+
m0 expS−

U0 + U+

kT
Dst − tcdJ s34d

over the very wide time interval

j−

m0
expSU0

kT
D , t − tc ,

j+

m0
expSU0 + U+

kT
D . s35d

This type of recovery is experimentally observed by moni-
toring temporal variation of resonant frequency after the con-
ditioning drive has been removed.15

The idea supporting the logarithmic recovery of Young’s
modulus had earlier been advocated by Ten Cate, Smith and
Guyer,15 although without identifying the proper time inter-
val s35d where the logarithmic dependence holds and omit-
ting the small linear correctionfthe last term in parentheses
of expressions34dg to the leading logarithmic pattern. It is
interesting to note that logarithmic kinetics also have been
attributed to the process of moisture-induced aging in granu-
lar media.30

V. FORCED LONGITUDINAL OSCILLATIONS
OF SANDSTONE BARS: COMPUTERIZED
REPLICAS OF ACTUAL EXPERIMENTS

The vast majority of experimental results on forced lon-
gitudinal oscillations of sandstone bars use slow, stepwise
frequency sweeps over one of the bar resonant
frequencies.11–15 A rough estimation based on the linear
theory of kinematic excitation yields the fundamental fre-
quencies

f0sld =
2l − 1

4L
ÎE0/r sl = 1,2,3, . . .d, s36d

whereE0 is the Young’s modulus in an unstrained, recovered
sample given by formulas12d at s=0, and attenuationg is
taken to be negligible. The relative positions of fundamental
frequencies at finite attenuation as calculated for slow up-
ward frequency sweep are displayed in Fig. 4. Here the reso-

nance curve show the dependence of response amplitudeR
staken on free end of the barx=Ld on drive frequencyf
=v /2p at very small drive amplitudeD=7.6·10−9 L and
with the model parameters as assumed for the next figure.

Figure 5 shows typical hysteretic resonance curves calcu-
lated in the vicinity of the second resonant frequency at suc-
cessively higher drive amplitudesD. In order to achieve re-
peatable hysteresis each successive pair of curves was
calculated following two preliminary sweep calculations.
Such curves are usually referred to as being conditioned.13

Arrows on the two highest curves indicate sweep directions.
The cycle time for an up plus down sweep over the fre-
quency interval 3700–4100 Hz was chosen to be 120 s.
Model parameters were adopted to fit the experimental con-
ditions and the experimental data as observed by Ten Cate
and Shankland in experiments on Berea sandstone.13 In par-
ticular, the ratioE+/r=7.439·106 m2/s2 was estimated from
relationshipss36d, s12d, and s13d with the second order fre-
quency, bar length, temperature, and saturation as follows
f0=3920 Hz, L=0.3 m, T=297 K, and s=0.25. The ratio

FIG. 4. Calculated resonance curve illustrating the relative po-
sitions of the first three resonance peaks under longitudinal kine-
matic excitation for a rock bar.

FIG. 5. Conditioned resonance curvesj =0,1,2,3,4,5 atsuc-
cessively higher driving amplitudesDj =3.8s j +0.2d j0d10−8 L. Ar-
rows on the two highest curves indicate sweep directions. The ab-
solute value of sweep rate isudf /dtu=400 Hz/min. Water saturation
is taken to bes=0.25.
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g /r=1.851 m2/s characterizing internal friction was chosen
from the best fit of low amplitude theoretical curvesFig. 5d
to its experimental prototype13 via comparison of quality fac-
tors. The parametersm0 expsU0/kTd=1 s−1 and U+/k
=2525 K determining the character of slow relaxation were
estimated in accordance with experimental measurements of
temporal relaxation of response acceleration amplitude at
fixed frequency13 and observations of recovering resonant
frequency as a function of time.15 Due to the rather slow
typical regimes of frequency sweep corresponding to actual
experiments there is neither the experimental possibility nor
the theoretical need to designate particular values for param-
etersn0 exps−W0/kTd andW+/k that are responsible for de-
fect creation kinetics. This is because above some critical
value depending on driving frequency the combination
n0 expf−sW0+W+d /kTg gives rise to results indistinguishable
from those obtained assuming the combination to be infinite.
According to the estimations of previous section the condi-
tion that the kinetics of defect creation could be treated as
practically instantaneoussi.e., formally characterized by in-
finite rate nd is fulfilled already provided the inequality
0.01f0&n0 expf−sW0+W+d /kTg holds. The combination of
parametersvE+/k coshh=275 K was chosen to quantita-
tively reproduce hysteretic phenomena in the sweep regimes
typical of actual experiments.13 Finally, the nonlinearity pa-

rameters coshh=2300,r =4, a=2 were estimated to map the
true asymmetry of experimental resonance curves.13

From Fig. 5 we clearly see that at each level of external
drive the effective width of resonance peak depends on the
direction of frequency sweep being narrower for upward
sweepsi.e., from lower to higher frequenciesd than for down-
ward sweepsi.e., from the higher to lower frequenciesd. As a
result we observe the hysteretic loops formed by upward and
downward curves both on their low and high-frequency
slopes. Historically this effect proved to be the first manifes-
tation of slow dynamics13 caused according to our theory by
the net creation of intergrain defects when the driving fre-
quency closely approaches to resonancesi.e., when the am-
plitude of alternating stress increasesd and rather slow their
annihilation when the driving frequency departs from reso-
nance si.e., when the amplitude of alternating stress de-
creasesd. It is worth noticing that in the case of conditioned
curves considered above annihilation of intergrain defects
persists even when the driving frequency approaches reso-
nance from far away until the amplitude of alternating stress
overcomes some threshold above which defect creation pre-
vails.

Figures 6sad and 6sbd were calculated without any pre-
liminary conditioning but with all model parameters for Fig.
5 preserved. The drive amplitude was chosen to be the same

FIG. 6. Resonance curves at driving amplitudeD=1.9·10−7 L.
Arrows indicate sweep directions. The absolute value of sweep rate
is udf /dtu=400 Hz/min. The dashed line in Fig. 6sad represents the
unconditioned initial curve made on the upward sweep. The dashed
line in Fig. 6sbd represents the unconditioned initial curve made on
the downward sweep.

FIG. 7. Resonance curves at driving amplitudeD=1.9·10−7 L.
The absolute value of sweep rate is slowed toudf /dtu=4 Hz/min.
Arrows indicate sweep directions. The dashed line in Fig. 7sad re-
solvable only in the magnified inset represents the unconditioned
initial curve made on the upward sweep. The dashed line on Fig.
7sbd resolvable in the magnified inset represents the unconditioned
initial curve made on the downward sweep.
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as for two highest curves on Fig. 5. Thus Fig. 6sad demon-
strates three resonance curves obtained during the three suc-
cessivesupward-downward-upwardd frequency sweeps be-
ginning with an upward sweep. The initial, unconditioned,
curve marked by the dashed line lies below the two subse-
quent curves. Figure 6sbd demonstrates three resonance
curves obtained during the three successivesdownward-
upward-downwardd frequency sweeps beginning with a
downward sweep. The initial curve marked by the dashed
line lies above two subsequent curves. The curves marked by
the solid lines in Figs. 6sad and 6sbd are practically repeatable
and coincide with the respective two highest curves on Fig.
5. All these results are in complete agreement with experi-
mental observations.13 The reason why the conditioned curve
does not coincide with its unconditionedsinitiald counterpart
in the sweep interval between the starting frequency and the
resonant frequency lies in the softer value of conditioned
Young’s modulus caused by an unrelaxed excess of defects
created during the initial sweep.

As sweep rate decreases, the differences above become
less pronounced thanks to the additional time for relaxation
at each spanning frequency. This point is illustrated in Figs.
7sad and 7sbd where the sweep rate was a hundred times
slower than for Figs. 6sad and 6sbd. Nevertheless, even in this
supposedly nonhysteretic case the memory of the highest
strain amplitude still persists. The latter result characterized
after its experimental detection13 as “perhaps surprising” can
be readily explained by the long-term recovery of Young’s
modulus dictated by the slow, almost logarithmic kinetics of
defect annihilationfsee formulass34d, s35d, s25d, and s31d
from Sec. IVg. With still slower sweep times exceeding one

day all three curves become indistinguishable regardless of
direction of initial sweep. This theoretical result corroborates
an indirect experimental indication in fixed-frequency mea-
surements of acceleration that a sweep time of a few days in
carefully controlled conditions would produce the same up
and down resonance curves.13

Apart from the reason mentioned earlier, measurements of
temporal relaxation of acceleration amplitude at fixed fre-
quency provide experimental documentation of how a rock
gradually loses memory of the highest strain,13 and they thus
elucidate the most interesting aspects of bond restoration ki-
netics. Figures 8 and 9 show theoretical relaxation curves
that correctly reproduce the main features of the
experiments.13 While making a repeatable up or down reso-
nance curveswith all model parameters the same as for the
two highest curves of Fig. 5d we stopped the sweep at timets
sdrive still ond and calculated the amplitude of responseR as
a function of timet− ts. As in the experiments the simulated
response amplitude gradually decreased when the stopping
frequency was lower than the resonant frequencyfFigs. 8sad
and 8sbdg and increased when the stopping frequency was
higher fsee Figs. 9sad and 9sbdg. Moreover, after approxi-
mately 10 min of relaxation the relaxation curves at a par-
ticular stopping frequency approached a long term level cor-
responding to the unconditioned part of the initial resonance
curve whether or not the upward or downward preceding
sweep was selected.

To reproduce another experimental facet of recovery
time13 we varied the previous simulations by stopping the
sweep and simultaneously turning off the drive for 30 s with
the sweep moving downwardfFig. 10sadg or upwardfFig.

FIG. 8. Decay of response amplitudeR at driving amplitude
D=1.9·10−7 L and fixed frequencyfs=3825 Hz, lower than the
peak frequency atf r =3846 Hz. In Fig. 8sad the sweep was stopped
while making a repeatable upward sweep. In Fig. 8sbd the sweep
was stopped while making a repeatable downward sweep.

FIG. 9. Growth of response amplitudeR at driving amplitude
D=1.9·10−7 L and fixed frequencyfs=3900 Hz, higher than the
peak frequency atf r =3846 Hz. In Fig. 9sad the sweep was stopped
while making a repeatable downward sweep. In Fig. 9sbd the sweep
was stopped while making a repeatable upward sweep.
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10sbdg from an already conditioned resonance. In a relatively
short timestens of secondsd the memory of the high strain
amplitude rock had experienced at resonance diminished far
more quickly than when the drive was left on. According to
the kinetic Eq.s7d this distinction finds its rational explana-
tion in a more favorable regime for defect annihilation under
zero stresss=0 in comparison with the regime governed by
the oscillating stress of a considerable amplitudesthough
lesser than that at resonanced. Figures 10sad and 10sbd were
prepared using the same model parameters as for Fig. 5.
Also, drive amplitude and sweep ratesexcept the short time
interval of drive and sweep stoppingd were set to the same
values as for the two highest curves in Fig. 5. Figure 10sad
displays the resonance curves obtained by the continuous
sweep in upward followed by a sectionally continuous sweep
downward. Figure 10sbd shows the complementary curves
obtained by a continuous sweep downward followed by a
sectionally continuous sweep upward. Effects of quick re-
covery sincreased of bar modulusE while sweep and drive
were stopped are clearly seen as discontinuities in the curves.

At stopping frequencies below resonance response amplitude
drops closer to the firstsrecoveredd upward-swept curve
marked on Fig. 10sad by the dashed line. At stopping fre-
quencies above resonance response amplitude jumps closer
to the first srecoveredd downward-swept curve marked in
Fig. 10sbd by the dashed line. A qualitative view of these
jumps comes from the indirect impact of strain on bar modu-
lus through the concentration of defects. During the period of
time when the sweep is approaching and passing resonance
strain intensity becomes substantial causing a corresponding
generation of defects, and the modulus decreases. This effect
is manifested as a shift of resonance curve downward in
frequency when the sweep has already passed resonance. If
the drive and sweep are then turned off, the strain vanishes
causing progressive annihilation of defects so that modulus
increases. As a consequence the part of resonance curve,
tracked after drive and sweep have been resumed, moves
backsi.e., upward in frequencyd as memory of the high strain
is lost.

Figure 11 compares the shifts of resonant frequency as
functions of driving amplitude at two different values of di-
latation parameterv while other parameters were kept the
same as in Fig. 5. Thus curve 1 calculated atvE+/k coshh
=275 K, for which strain-induced feedback between the
slow and fast subsystems is substantial, demonstrates the al-
most linear dependence typical of materials with nonclassical
nonlinear response, i.e., materials that possess the basic fea-
tures of slow dynamics. In contrast, curve 2 calculated atv
=0, when strain-induced excitation of the slow subsystem is
absent and, hence, the mutual feedback between the slow and
the fast subsystems is totally broken, demonstrates the al-
most quadratic dependence typical of materials with classical
nonlinear response.31 Closer inspection indicates that curve 1
can be approximated by the linear and the quadratic terms,
which are in line with the second-order polynomial fit of
Young’s modulus extracted by Smith and Ten Cate from the
experiments.32

Figure 12 shows the gradual recovery of resonant fre-
quencyf r to its maximum limiting valuef0 after the bar was

FIG. 10. sad Resonance curves obtained by a continuous upward
sweep and subsequent sectionally continuous downward sweep.
During the downward sweep both drive and sweep were turned off
simultaneously for 30 s at fixed frequencyfs=3825 Hz, lower than
the peak frequency atf r =3846 Hz.sbd Resonance curves obtained
by continuous downward sweep and subsequent sectionally con-
tinuous upward sweep. During the upward sweep drive and sweep
were turned off simultaneously for 30 s at fixed frequencyfs

=3900 Hz, higher than the peak frequency atf r =3846 Hz. For both
pictures the driving amplitude and the absolute value of sweep rate
when being turned on wereD=1.9·10−7 L and udf /dtu
=400 Hz/min, respectively.

FIG. 11. Negative of the shiftf r − f0 of peak frequencyf r from
its asymptotic valuef0 as a function of normalized driving ampli-
tude D /L for a hysteretic nonlinear materialscurve 1d and for a
classical nonlinear material withv=0 scurve 2d.
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subjected to high amplitude conditioning and then condition-
ing was stopped. Conditioning was performed by multiple
short-range sweeps over the resonance at the drive level used
to obtain the third pairs j =3d of curves in Fig. 5. We have
plotted three different curves corresponding to three different
saturations with all other model parameters used for Fig. 5
retained. The net frequency shiftf r − f0 consists of two dif-
ferent parts, namelysid the expected dynamic shift caused by
strain nonlinearity at high levels of excitation31 and sii d the
shift caused by the slow subsystem. However, only the sec-
ond part can actually be observed during the recovery pro-
cess because the first vanishes almost instantaneously on
switching off the high amplitude drive. Hence, the visible
recovery should be governed by the slow kinetics of restor-
ing intergrain cohesive bonds. From Fig. 12 we clearly see
the very wide time interval 10t0, t− tc,1000t0 of logarith-
mic recovery of resonant frequencyf r, in complete agree-
ment with experimental results15 and analytical calculations
summarized by formulass34d ands35d from Sec. IV. Heretc
is the moment when conditioning was switched off andt0
=1 s is the time scaling constant.

The process of low amplitude probing of recovering reso-
nant frequency to determinef r as a function of time follows
the same procedure either experimentally or theoretically.
After the high-amplitude conditioning drive is stopped, a
low-amplitude drive remains on to repeatedly sweep the
resonance curve and monitor the moving position of resonant
frequencyf r. Figure 13 illustrates the set of successive reso-
nance curves corresponding to the time-dependent recovery
of resonant frequency given by curve 3 of Fig. 12. At each
successive sweep the curves shift upward in frequency and
gradually approach an asymptotic curve with the asymptotic
resonant frequencyf0 indicated by an arrow. Only a fraction
of the successive resonance curves calculated over the time
interval t− tc.1 s are clearly distinguishable because sepa-

ration between neighboring curves progressively diminishes
with successive sweeps. The amplitude of the probing drive
was taken to be as small asD=1.14·10−9 L.

Another interesting experimental observation is the dra-
matic suppression of hysteresis with decreasing water
saturation.7 According to our theory this effect can be under-
stood by noting that equilibrium defect concentration in an
recovered samplec0 s13d drops more than three times in
magnitude when water saturation decreases froms=0.25 to
s=0.05. Indeed, it is precisely the equilibrium defect concen-
tration s13d that controls variation of elastic moduluss11d
through strain-induced variation of nonequilibrium defect
concentrationc as follows from the kinetic Eq.s7d and for-
mulas s8d–s10d. This conclusion has been confirmed by di-
rect computation with saturations=0.05 being the only
model parameter changed from the parameters adopted for
Fig. 5. The results shown in Fig. 14 contrast in hysteresis
with those of Fig. 5. Figure 14 also demonstrates a substan-

FIG. 12. Time-dependent recovery of peak frequencyf r to its
asymptotic valuef0. Curves j =1,2,3 correspond to successively
higher saturationssj =0.05s2j −1d. The frequency shiftf r − f0 is nor-
malized by both the asymptotic frequencyf0 and the effective con-
ditioning strain«eff. Here«eff is defined as the value of dimension-
less response amplitudeR/L which had been attained during high-
amplitude conditioning tuned to the frequency of resonance.

FIG. 13. The set of successive resonance curves obtained by
means of back and forth sweeps around the recovering resonance
after the high-amplitude conditioning drive was stopped. The arrow
indicates the asymptotic resonant frequency. Water saturation, am-
plitude of probing drive, and absolute value of sweep rate ares
=0.25,D=1.14·10−9 L, and udf /dtu=400 Hz/min.

FIG. 14. Conditioned resonance curvesj =0,1,2,3,4 atsucces-
sively higher driving amplitudesDj =3.8s j +0.2d j0d10−8 L. Arrows
on the two highest curves indicate sweep directions. The absolute
value of sweep rate isudf /dtu=400 Hz/min, and water saturation is
s=0.05.
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tial increase of resonant frequencyf r in comparison with Fig.
5 as a result of the monotonic growth of Young’s modulus
with decreasing saturationfseen already ats=0 from expres-
sion s12d combined with formulas13dg. Due to this fact the
interval of frequency sweep for producing Fig. 14 was
shifted to 5200–5600 Hz.

In addition, we have observed a monotonic decrease in
quality factorQ sdefined here as resonant frequencyf r di-
vided by the resonance curve width atÎ2/2 of peak height at
low-amplitude drived with increase of water saturations.
This trend is well-documented in numerous experiments.5–8

In the present theory it derives from the drop of resonant
frequencyf r with water saturations as seen from the low-
amplitude analytical estimation ats=0 andg=0 when the
expressionss36d, s12d, and s13d are combined. Figure 15
illustrates the theoretical dependence of quality factorQ on
saturations with all model parameters except the variables
as given in Fig. 5.

It is worth noticing that the quantitative character of the-
oretical results depends substantially on the choice of any
particular model parameter at fixed other parameterssnotice,
for example, Figs. 5 and 14 distinguished only by differing
water saturationsd. Nevertheless, there exist at least two pos-
sibilities to change several model parameters simultaneously
without visible variations in characters of resonance curves.
The most evident set of such parameters are three nonlinear-
ity parametersa, r, and coshh that at low level strains may
be replaced by only two of their combinationsfsee expansion
s6dg. Another possibility to obtain a resemblance in reso-
nance curves might be revealed empirically by simultaneous
variation of parameters coshh, v, andU0 during trial simu-
lations sfor example, a decrease of coshh could be comple-
mented by a concordant increase ofv and decrease ofU0,
given the sumU0+U+ remains fixedd. However, analyzing
other facets of slow dynamics allows one in principle to rule
out such an ambiguity. Still, the main obstacle to the reliable
choice of all model parameters is caused by the lack of com-
prehensive experimental data that ought to be collected on
the same specimensor on the set of equivalent specimensd
with the use of all already approbated experimental ap-
proaches both dynamic and static.

There is a further remark about numerical simulations.
When discretizing the coordinate variable in the equation for
the elastic subsystem the best convergence of the computa-
tional procedure is achieved by adjusting the mesh width in
such a way that each node of excited standing wave has to be
positioned in the closest possible vicinity to some discrete
coordinate site.

VI. DYNAMICAL REALIZATION OF END-POINT
MEMORY: THEORETICAL PREDICTIONS

Figures 5–7 and 14 demonstrate a dynamical realization
of hysteretic phenomena in the case of only two reversing
points in the driving frequency protocol. The question arises
whether an effect similar to the end-pointsdiscreted memory
that is observed in quasistatic experiments with a multiply-
reversed loading-unloading protocol4,9–11,33 could also be
manifested in resonating bar experiments with a multiply-
reversed frequency protocol.

FIG. 15. Quality factorQ as a function of water saturations.
The fixed model parameters were assumed to be the same as for
Fig. 5.

FIG. 16. Manifestation of end-point memory in dynamic re-
sponse with a multiply-reversed frequency protocol. Model param-
eters, including the absolute value of sweep rate, coincide with
those for the two highest resonance curves in Fig. 5. The range of
frequency sweep is on the low-frequency slopes of the two highest
resonance curves from Fig. 5.R is the response amplitude taken at
the free end of the bar.
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We studied this problem theoretically and show the results
in Fig. 16, where the model parameters including the abso-
lute value of sweep rate coincide with those of the two high-
est resonance curves in Fig. 5, while the sweep range is taken
within the low-frequency slopes of these curves. End-point
memory, defined here as the memory of the previous maxi-
mum amplitude of alternating stress, is seen to be pro-
nounced in the form of small loops inside the big loop. The
starting and final points of each small loop in Fig. 16 coin-
cide, which is the typical manifestation of end-point memory.
A small closed loop can be produced anywhere on the un-
conditionedsdashedd curvesnot shownd, but the situation on
the conditioned up-going curve looks more complicated.
Thus, the closeness of an extremely small loop can be
achieved only on the upper part of the conditioned up-going
curve. The reason for such behavior is the existence of a
threshold stress amplitudesdepending on previous historyd
that must be surmounted in order for the kinetics of the slow
subsystem to be switched from defect annihilation at lower
amplitudes to defect creation at higher amplitudes. This re-
striction can be substantially relaxed provided the linear size
of the inner loop becomes comparable with that of the big
outer loop. Direct calculationssnot shownd confirm the ear-
lier statement, and the chance to find the inner loop being
closed increases progressively with the growth of its size
irrespective of whether the inner loop was produced on an
up-going or on a down-going curve of the big outer loop.

VII. CONCLUSION

To summarize, we have performed a systematic analytical
and computational simulation of various nonlinear and relax-
ation phenomena observed experimentally in the nonclassi-
cal resonant response of bar-shaped sedimentary rocks when
excited by longitudinal standing waves. In particular, we
have managed to describe hysteretic behavior of resonance
curves, almost linear shift of resonant frequency as a func-
tion of driving amplitude, evolution of response amplitude
after temporarily stopping a frequency sweep, jumps of reso-
nance curves after temporarily interrupting the external drive
si.e., when sweep and drive were paused simultaneouslyd,
suppression of hysteresis at small water saturations, and the
decrease of elastic modulus and quality factor with increased
saturation. In doing so we have explored both qualitatively
and quantitatively the consequences of two coupled sub-
systems in which mesoscopic defects in a field of internal
stress are created and removed at different rates in response
to an external drive.

In our treatment the subsystems are as follows:sid a sub-
system of longitudinal displacements andsii d a subsystem of
ruptured intergrain cohesive bonds. This is in apparent con-
trast with other two-subsystem approaches34–37 where the
second subsystem is associated with auxiliary hysteretic ele-
ments. Considering our approach as an alternative to the al-
ready known theories34–37 we would emphasize its principal

advantage, namely, the ability to reproduce a remarkably
wide class of experimental results by means of a restricted
number of physical parameters. The significant points of our
model are specified through the coupling between the sub-
systems on the one hand and the nontrivialsi.e., soft-ratchetd
kinetics governing the particular constituent concentration of
ruptured bonds on the other. This coupling ensures that the
elastic subsystem triggers evolution of the subsystem of rup-
tured bonds by changing the conditions of their equilibrium,
while the subsystem of ruptured bonds affects the elastic
subsystem by reducing Young’s modulus in proportion to the
prevailing concentration of defects. Due to the substantial
excess of rupture rate over restoration rate the subsystem of
ruptured bonds breaks the symmetry of dynamical response
to an alternating external drive in the entire system. This
asymmetry produces the majority of nontrivial nonlinear and
relaxation effects in sedimentary rocks. Nevertheless, we
must bear in mind that the logarithmic recovery of resonant
frequency could not be understood without additionally in-
voking a proper distribution of restoration rates within a con-
siderable but finite interval. Otherwise, recovery kinetics
would inevitably shrink into purely exponential decay when
the width of the rate distribution tends to zero.

It is necessary to say that despite its success, this model
could be further improved to reproduce the preferable gen-
eration of odd harmonics as seen in experiments at low ex-
citation levels.12,38 Following Kadish, Johnson, and
Zinszner38 this modification could be done by introducing
nonlinear in place of linear attenuation. Unfortunately, the
type of dissipative nonlinearity cannot be strictly established
from the experiments,39 and even the simplest linear form of
internal attenuation adopted in the present research might
actually originate from several fundamentally different
physical mechanisms.40 Thus, detailed analysis of feasible
nonlinear attenuations goes beyond the scope of the present
investigation.

Still, even within the framework of the present formalism
we have been able to predict an unusual hysteresis with end-
point sdiscreted memory in an essentially dynamical realiza-
tion.

As a final remark, the term “slow subsystem9 is used as a
synonym for the notion “subsystem of ruptured intergrain
cohesive bonds.” At first sight, this term seems to be incor-
rect in that the soft-ratchet kinetic Eq.s7d contains two sub-
stantially different rates, one of whichsthe bond rupture rated
may be comparable to or even exceeds the external drive
frequency. However, it is precisely the fast rate of bond rup-
ture that ties defect concentrations to strain amplitude when
this amplitude is growing. As a result, the effective rate of
concentration growth is determined by the slow increase of
strain amplitude in an extremely slow frequency sweep. On
the other hand, when strain amplitude decreases, then only
the slow mechanism of bond restoration is able to work.
Thus, the term slow subsystem appears to be reasonable be-
cause typical times responsible for the steady evolution of
defect concentration turn out to be very large in comparison
with the period of alternating strain.
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