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We developed and thoroughly examined a model of longitudinal vibrational resonance in bar-shaped sedi-
mentary rocks; these materials exhibit memory that originates from an essential asymmetry in processes of
rupture and recovery of intergrain and interlamina cohesive bonds. The theory relies on an appropriate isolation
and an adequate formalization of two mutually dependent subsystems, namely, a subsystem of ruptured bonds
and a subsystem of internal longitudinal displacements. The subsystem of ruptured bonds is shown to be of a
soft-ratchet type, so that its response to an alternating internal stress is characterized by broken symmetry and
appears as nonzero long-term temporal and spatial changes in the concentration of ruptured bonds. The internal
stress is generated by an alternating external drive acting both directly through the subsystem of longitudinal
displacements and indirectly through temporal and spatial modifications of Young’s modulus due to changes in
concentration of ruptured bonds. The scheme reproduces the main experimental effects by using the simplest
linear form of attenuation in an elastic subsystem and realistic assumptions about the stress-strain relation. In
particular, it correctly describes: hysteretic behavior of a resonance curve on both its upward and downward
slopes; linear softening of resonant frequency with increase of driving level; gréaluabst logarithmig
recovery(increasg of resonant frequency at low dynamical strains after the sample was conditioned by high
strains; and temporal relaxation of response acceleration amplitude at fixed frequency. These are the most
interesting observations typical of forced longitudinal oscillations of sandstone bars in the nonlinear regime.
Further, we are able to trace how water saturation enhances the hysteresis and simultaneously decreases the
quality factor because of an increase in equilibrium concentration of ruptured cohesive bonds. We also predict
theoretically a dynamical effect analogous to the widely known quasistatic effect of hysteresis with discrete
(end-poini memory.
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I. INTRODUCTION (increase¢ of resonant frequency after the large conditioning
drive has been removed.

Sedimentary rocks, particularly sandstones, are distin- The fragmentary understanding of these observattdris
guished by their grain structuré in which the core of each has stimulated us to look into the whole problem, usually
grain is much harder than the intergrain cementatiorcharacterized as “slow dynamics,” more systematically and
material? Imperfect intergrain cementation partially appearsto propose a closed-form theory. This is based upon an ex-
as porosity:—3 a property governing rock permeability that is plicit, physically motivated formalization of a sandstone bar
essential, e.g., for petroleum productiohin addition, po-  system as two coupled nonlinear subsystems, one of which
rosity facilitates penetration of water into areas of intergrainbreaks the symmetry of system response to an alternating
contact$? causing a dramatic impact on elastic moetdli  external drive and acts as a sort of soft ratchet or leaky
and seismic dissipation factotss The peculiarities of grain  diode!® We specify these subsystems as a fast subsystem of
and pore structures give rise to a variety of remarkable nonlongitudinal displacements and a slow subsystem of ruptured
linear mechanical properties demonstrated by rocks, both amtergrain and/or interlamina cohesive bonds.
quasistatic and alternating dynamic loading. Thus, the hys- In this paper we present a detailed development of a
teresis earlier established for the stress-strain relation imodell® and we inspect its ability to explain numerous ex-
samples subjected to quasistatic loading-unloading cytles perimental observations seen in forced longitudinal oscilla-
has also been discovered for the relation between accelerdens of sandstone bars. We demonstrate that a broad set of
tion amplitude and driving frequency in bar-shaped samplegxperimental data can be understood as various facets of the
subjected to an alternating external drive that is frequencysame internally consistent approach. Furthermore, the sug-
swept through resonané&13At strong drive levels there is gested theory will be shown to predict the dynamical realiza-
an unusual, almost linear decrease of resonant frequendipn of hysteresis with end-point memory, figuratively resem-
with strain amplitudé?*1>and there are long-term relax- bling its well-known quasistatic prototypé&® (see also more
ation phenomeri&® such as nearly logarithmic recovery recent publicatiorfs'.
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Il. SUBSYSTEM OF LONGITUDINAL DISPLACEMENTS centers of neighboring grains divided by the typical thick-
A reliable probing method widely applied in resonant bar"€ss of intergrain cementation contact, while the exponents

experiments is to drive a horizontally suspended cylindricat”‘nda cha(acterlzg the repuls!ve and the attractive parts of
sample with a piezoelectric force transducer cemented bér_nergram mteractlon', respect.|vely. lln'other yvords, We ap-
tween one end of the sample and a massive backload, and pgoximate the potgntlal of grain-grain interaction by the em-
simultaneously measure the sample response with a Iigh[z'r'c".JII Mie potential. At small straingdu/dx| <sechy we
weight accelerometer attached to the opposite end of th8btaln
bar!315In this case the alternating strain configuration inside -
the bar is principally longitudinal, and has to be treated as Eoulax
kinematically excited? The relevant boundary conditions
for the field of longitudinal displacementsare as follows: +5(r?+ra+ a2+ 6r + 6a+ 11)(coshz du/ox)?

(6)

and, hence, the parametarsa, coshy are seen to com-
pletely specify the nonlinear corrections to Hooke’s law, pro-
u vided that a direct influence of straisu/dx on Young’s
o(x=L[t) + 7m(x= Ll =0, (2)  modulusE is absent. Meanwhile, the indirect effect of strain
on Young’s modulus, namely the impact mediated by the
where t is time andx denotes the running longitudinal concentrationc of ruptured intergrain cohesive bonds, will
Lagrange coordinate of the bar wik¥0 andx=L marking  be incorporated in our theory as the main source of all non-
its driven and free ends, respectively. As a rule, the drivingrivial phenomena mentioned in the Introduction. We shall
amplitudeD(t) is set to be basically constant except for therefer to this subject in the next section.
moments when the driving device is switched on, is switched
into another constant driving level, or is switched off, IIl. SUBSYSTEM OF RUPTURED COHESIVE BONDS
whereas the time dependence of cyclic driving frequency
w(t) is prescribed by the type of frequency sweep. Another Any dynamical model dealing exclusively with a single
kind of experiment where the parts played by the drivingsubsystem of longitudinal displacements is incapable of re-
amplitudeD(t) and the driving frequency(t) are reversed producing the entire suite of phenomena exhibited by sand-
would also be informative. stones in resonant bar experiments without invoking specu-
For the evolution equation for the field of longitudinal lative assumptions (e.g., temporal evolution of the
displacementreferred to also as the elastic subsysteve ~ @mplitude-frequency characterisi that does not follow

~ 1 -3(r +a+ 3)coshz aulox

t
u(x=0Jt) = D(t)CO{qy + f dTw(T)] , (1)
0

write the most general form from the original equation or without incorporating auxiliary
quantities(e.g., maximum strain excursibi that can be jus-
@ _ (9_U+ i{ oF } 3) tified only for the quasistatic theory. When holding this po-
patz Toox ox A(Pul axar) sition one is unable to depart from an incomplete, fragmen-

) ) ... tary description. At best, one may have to appeal to a
evaluating its content step-by-step. Thus, the dissipativgyhthetical slow subsystem only in a rather artificial
function 7 must be some even function of strain velocity wayl1517 i.e., without explicit specification of all relevant
d°ulaxét in order to ensure both the positiveness and th&dynamic or kinetit independent variables and their govern-

internal character of dissipation. Here we restrict ourselves t?ng evolution equations, not to mention the mutual feedback
the Stokes internal frictid associated with the dissipative between the slow subsystem and the fast elastic one.

function We overcome the difficulties of single-subsystem model-
F=(y2)[Pul axat]?. (4) ing by introducing along with the fast elastic subsystem a
slow subsystem of ruptured intergrain cohesive bonds via
The quantitiep and y are, respectively, the mean density of their concentratiort. At any given stress (tensile or com-
sandstone and the coefficient of internal friction in an elastigressivé the quantityc must evolve to its stress-dependent
subsystem. In what follows, the dependenceg @ind y in  equilibrium valuec,. In order to achieve reliable consistency
Egs. (3) and (4) on temperaturdl, water saturatiors, and  petween theory and experiment such an evolution has to be
strain gu/dx will be ignored. The stress-strain relation treated as being nearly logarithmic rather than exponential
(o—dul 9x) we adopt in the form on the one hand and as being sensitive to the sign of the
E sech applied stress on the other. Both of these aspects can be
o= pve ] readily included in the concept of blended kinetics which is
(r - a)[coshy qu/ox+ 1] believed to find more or less natural physical justification in
E sechy consolidated materials. The idea consists of presenting the
(r — a)[cosh auldx + 1] (5) actqa_\l concentration of defeotsas_ some reasonable super-
position of constituent concentratiogswhere each particu-
which atr>a>0 allows one to block the bar compressibil- lar g is proved to obey rather simple kinetics.
ity at straingu/ dx tending toward +0-sech. Thus, the pa- We start with considering a set of constituent concentra-
rameter coshy is assigned for a typical distance between thetions. Every particular concentrati@nin this set is assumed
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to evolve to its stress-dependent equilibrium vadjjewith insufficient to specify the set of constituent concentrations
the velocitydg/ ot that in lowest order approximation should constructively, i.e., we still lack a definite recipe for how
be proportional to the differencg,—g. Thus, atg>g, the  (with what weighj any constituent concentration of defegts
ruptured bonds are becoming restor@d/dt<0) while at  should contribute to the actuéverageyl concentration of
g<g, the unruptured bonds are becoming brok@g/dt  defectsc. Thus, to proceed further some additional assump-
>0). Denoting the restoring rate as=u,exp(-U/kT) and tions about the distributions of activation barriers must be
the rupturing rate as= v, exp(-W/kT) we can formalize the added. For the sake of definiteness we approximate the bar-

earlier statements in terms of the following kinetic equation:fiers U and W as distributed independently and uniformly
within the intervals given earlier. Thus, the relative number

daglot=—[pnb(g-9,) + v6(g,~ 99~ 9y), (7) " of restoration barriers in the intervdU surroundingU at W

whereU and W are the activation barriers for the processesbeing fixed is taken to be(U-Ug)6(Uy+U.-U)dU/U.,,
of bond restoration and bond rupturation, respectivelis ~ While the relative number of rupturation barriers in the
the Boltzmann constant, an#(z) designates the Heaviside interval dW surroundingW at U being fixed is taken to be
step function. O(W-Wp) 6(Wy+W, —W)dW/W,. As a consequence the ac-
There is a question whether the rajesand v should be  tual concentration of ruptured cohesive bormiss deter-
the same or different and why. We argue that the parametefgined by the constituent concentratigrvia the formula
) a_nd v have to differ subs_tantially inasmuch as the volume Ut Wt W,
attributed to generate a single crack turns out to be essen- c= 1 duf dw-g. (8)
tially mesoscopic although confined to an intergrain space. U.W, Jy, Wo
Indeed, under a tensile load there are an immense number
of spatial ways for a mesoscopic intergrain cementation conThis expression does not contradict the next assumption
tact to be broken with the same basic result: creation of an
intergrain crack. Here we understand that any relevant mac- 9,=Co 9)

roscopic characte_r!stm of rock is bound to .be Insensitive torelating the equilibrium value of actual concentration of rup-
the particular position of a crack between given nelghborlnqured bondsc, to the equilibrium value of constituent con-

grains but should essentially depend on the cumulative ared,niration of ruptured bonds,, where bothc, and g, are

of cracks per unit volume V‘.’hiCh can Serve as an appropriat rescribed by the stress. As a matter of fact, only the
measure for the concentration of defects. Similarly, there ar uantityc, might find a legitimate place in stand’ard thermo-
\t/)an?u?hways for gndalrer?dy eX|st||ng tcrac.lf |nI equ|!|br|um|.to ynamical estimation&23 whereas in dealing withy, we

€ Turther expanded when surplus tensiie load IS appli€Qy, st |agn upon more or less plausible conjecture, e.g. as
However, under compressive load a crack, once formed, ha@stablished by formuléo)
only one spatial way to be annihilated or contracted. These According to Kosevick-22the equilibrium concentration

are the key observations that imply a large dlspamgy of defects associated with a stresss given by the expres-
> ug between the rates, and u, regardless of the cohesive sion

properties of the cementation material. Moreover, because o
possible water intercalation and/or fine fragmentation of ce- C, = Co eXpvalKT), (10)
mentation material between opposite faces of a crack, we can
expect the typical value dfl to exceed that ofV. In combi-  where the parameter>0 stands for a typical volume ac-
nation all these factors might sustain an even greater dispacounting for a single defect and characterizes the intensity of
ity v> u between the actual ratesand u of defect creation dilatation. Although formulg10) should supposedly be ap-
and defect annihilation that may amount to many ordersplicable to the ensemble of microscopic defects in crystals, it
This conclusion, which relies on the mesoscopic scale of thevas derived in the framework of continuum thermodynamic
structural elements involved, finds a natural analogy on théheory that does not actually need any specification of either
macroscopic level when samples once having been brokethe typical size of elementary defect or the particular struc-
remain broken practically forever. ture of the crystalline matrix. For this reason we believe it
Up to now we specified only a particular constituent con-should also work for an ensemble of mesoscopic defects in
centration of defectg that can be labeled by the pair of fixed consolidated materials, provided that for a single defect we
activation parameterd andW. In reality, any small but still  shall understand some elementary rupture of intergrain cohe-
macroscopic volume of sandstone contains a huge variety ¢fion. The equilibrium concentration of defects in an un-
structural elements distinguished by size, composition, natustrained, completely recovered ba has to be some func-
ral cleavage, etc. As a result, activation barriers for the protion of temperaturél and water saturatios. The particular
cess of cohesion restoratidh and the process of cohesion character of these dependences does not follow from first
ruptureW have to be distributed over some ranges, which weprinciples and needs to be extracted from experiments.
denote adJy<=U=<Uy+U, and Wy=W=W,+W,, respec- At this point we introduce a phenomenological relation-
tively. Although the types of these distributions are unknown ship between defect concentratioand Young’s modulug.
their characteristict),, U, andW,, W, must be insensitive Intuition suggests thaE must be some monotonically de-
to a particular choice of bar’'s cross section in accordancereasing function o, which can be expanded in a power
with specimen homogeneitigimilarity) on the macroscopic series with respect to a small deviation offrom its un-
scale. Of course, the very number of these characteristics &rained equilibrium value,. In the lowest approximation
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we can drop all powers except the zeroth and first and as @,. Nevertheless, this fact does not indicate a zero-valued,
result safely rearrange the required relation into the form long-term correction t@, in the solutiong of the kinetic Eq.
(7) as might be roughly expected. On the contrary, the great

E=(1-cleq)E.. (1D gisparity »> u between the rate of defect creatiorand the
Herec, andE, are the critical concentration of defects and rate of defect annihilatiop. turns out to provide the physical
the maximum possible value of Young's modulus, respecmechanism that breaks the symmetry of system response to
tively. Both of these parameters we take to be independent i altérnating external drive and acts as a sort of soft ratchet
temperature and water saturation. or leaky diode. It is the core of this modeling.

According to relationshifg11) the actual concentration of In contrast, earlier theories of inelastic relaxation devel-
defectsc is incorporated into the evolution equation for the OPed for crystalline solid8 rely upon a symmetric form of
elastic subsystert8) as normalized by its critical value,. ~ the kinetic equationgcorresponding tqu=» in our nota-

For this reason there is no need to supply the quantities,  tions) and do not assume the equilibrium value of the inter-
andc,, by any particular units, though the units must be then@l relaxation parametgicorresponding ta, in our nota-
same for all three quantities. As for the units of the runningtions) to be driven dynamically. Also, earlier theories of
and equilibrium constituent concentratiogandg, it is suf-  crack formatiof® differ from our approach in that they ne-
ficient to know only their relationship to the units of actual 9lect the possibility of crack recuperatidie., they assume
concentration given by expressi¢®). ©=0 in our notationsand do not incorporate a variable con-

At constant load the kinetic Eq7) ensures that the con- Centration of defects into the right-hand side of the appropri-
centrationc tends to its equilibrium value, given by for-  ate kinetic equation.

tains the magnitude we have formulated the principal theoretical propositions of
our model and have formalized them in terms of two
E, =[1 - (cy/ce)expvolkT)|E,. (120  coupled, essentially nonlinear subsystems. First, we have

It is worth noticing that the resulting functional de endencesuggested a dynamical equation for the field of longitudinal
9 9 . P displacementg3) with the appropriate specification of the
of E, on o almost exactly matches the experimentally estab-

lished fitting formula for elastic moduli as a function of an dissipative functior(4), the stress-strain relatia®), and the
applied IoagdP~—a>O (see, e.q., Ref. 24, and referencesimpaCt of defect concentration on Young's modul(s).
therein. Furthermore, relatior{12) taken at zero stress Second, we have developed a soft-ratchet-type kinetic equa-

=0 allows us to reconstruct the temperature and saturati tion for the constituent concentration of defectsptured

(0] . . . . g
: S : tergrain cohesive bonjl§7) with the appropriate specifica-
dependences of the unstrained equilibrium concentration c{?lonsgof stress-guided, would-be equiIiFt))Fr)iunF’)l consti?uent con-

defectsc, using available experimental data for Young's centration of defectg9) and would-be equilibrium actual

gﬁgmusirig n :rclit(;i'r?fd’ trr?ecovegelzftjhzﬁgnpées. ;wsérgtmiconcentration of defectd 0) and have adopted a reasonable
" ae o8 P relation between the constituent concentration and the actual
extrapolatiod®>?6 and analyze temperature-dependent data a

zero saturatioll plus saturation-dependent data at rooméoncentratlon of ruptured intergrain cohesive bot@js We

temperatur® (selected for Berea sandstonwe are able to also have presented boundary conditions for the field of lon-
P ) o ) n gitudinal displacementgl) and(2) allowing us to formalize
suggest the following fitting formula:

the effect of the transducer on the whole bar system.
T\2 Bs\ The only thing remaining to be specified is the initial
CO:Ccr(T_> costt a—exr(—:)smhza , (13 conditions. These must depend on the sample’s prehistory.
er Thus, for the unstrained, completely recovered bar the initial
where saturatiors varies within the interval &s<1. The conditions are written as follows:
fitting parameters relevant for Berea sandstone are as follows
T,=1475 K, cosha=16,8=10. Ats+ 0 our approximation uxt=0)=0, @(Xh =0)=0, (14
is expected to work at least within the temperature range ot
between irreversible damage thresholds of sedimentary
rocks, namely between the freezing-point of pore water g(x/t=0) =cy, (15
(=273 K) and the baking point of interstitial clays
(=345 K).

The significant issue of our approach is contained in the
kinetic Eq.(7) that can be applied to both static and dynamic
regimes of external load. In the latter case, howevercfor
and g, we must consider the would-be equilibrium quanti-
ties, i.e., quantities given by formulés0) and(9) where the In this section we illustrate two different kinetic regimes
stresso is taken to be dynamical. of defect creation and annihilation under an alternating drive

At small dynamical stressefr|<kT/v the exponent that can be the basic to qualitative understanding of experi-
explva/kT) dominating the expressiofl0) for ¢, can be  mental results as well as their computerized replicas. For this
readily approximated by the two first terms in its expansionpurpose we introduce a quantit§he surplus constituent con-
Because of relatiori9) a similar approximation applies for centration

where 0<x<L.

IV. SOFT-RATCHET KINETICS UNDER AN
ALTERNATING DRIVE
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FIG. 1. Normalized solutioiG/A of the soft-ratchet kinetic Eq.
(18) with sinusoidal stimulation(17) at u=1 s%, »=4000 s, f . ) ) ) o
— w/2m=4000 Hz,5=0, and the initial conditio&(t=0)=0 (solid (18) under sinusoidal stimulatiofil7). Curvesj=1,2,3,4corre-

. . ; ]
steplike ling. The dashed line indicates the normalized sinusoidalspOnd to successively higher ra.tes of d_efect creaty ;0 S
. . e . . . . with all other parameters from Fig. 1 being preserved. Time on the
stimulationG,/A=sinwt. Time along the abscissa is normalized to ) . . . .
o ; abscissa is normalized to the inverse rate of defect creation 1/
the oscillation period 1ff.

separately for each curve.

FIG. 2. Normalized solutios/ A of the soft-ratchet kinetic Eq.

G=9-% (16) Asin(wt + ) - G(t) < 0. 21)
that measures the exceGs>0 or shortage5 <0 of defects
relative to the unstrained backgrougg, and we approxi- A time interval of increase is followed by a time interval of
mate the impact of the dynamic subsystem onto the kinetiglecrease and vice versa yielding a net full step in each cycle
subsystem by a single harmonic 27l w.

Although the kinetic Eq(18) could be integrated analyti-
cally at every time interval where either inequali@®0) or
(21) holds, it is impractical to match such piecewise solu-
tions into concise expression suitable for qualitative analysis.
Instead, even a quick look at the computer solutidfig. 2)
is sufficient to evaluate the me#étime-averagedmagnitude
H of the steady-state solution f@ in comparison with the

dG/dt=-[u6(G-G,) + v8(G,-G)[(G-G,). (18  amplitudeA as well as to estimate the effective rateof
cyclic buildup of surplus constituent concentrati@nunder
Note, however, that to lowest order the amplitulés pro-  an oscillating load in comparison with the rateof mono-

GO'E go_gO:ASin((Ut"' 5); (17)

whereA and § are some functions of the longitudinal coor-
dinatex. Their particular forms do not need to be specified
because at each fixedthe quantityG obeys the ordinary
differential equation

portional to the amplitude of strain tonic growth of G under a constant tensile load. In preparing
) Fig. 2 we took the ratg: to coincide with its maximum value
Julgx =g sin(wt + J) (19 exp-Uy/kT)=1 sL, which in Sec. V will be adopted for

OIj_nterpreting experimental results on slow dynamics. The fre-
quencyf=w/27 was chosen to be 4000 Hz, and the rate
was tested at four essentially different values 40, 400, 4000,

taken in the same single mode approximation. The prop
tionality coefficientvc,E/KT can be readily extracted from

expressiong17) and (19) by using the approximate stress- and 40 000 § (Fig. 2, curves 1, 2, 3, and 4, respectively

strain relationoc=Edu/dx and formulas(9) and (10) for g, -
andc,. Here for simplicity we ignore the time dependence ofA.‘" four curves st_rongl_y indicate that for=0.01f the effgc-
tive rate\ of cyclic buildup does not drop more than five or

Young's modulus through the total concentration of defects.”. ~ . .
Starting from the zeroth valug(t=0)=0 the kinetic Eq. six times below the rate. Moreover, atv=0.01f the ratio

(18) and the sinusoidal drivél?7) cause surplus constituent H/.A always exceed.s value of 0.8 and .raplldly approaches
. ; . - unity as the ratiav/f increases. Another significant observa-
concentrationG to grow in each cycle in a nearly steplike . . : L
. . L ; tion consists of the almost total suppression of periodical
fashion foru<v= w/27 (Fig. 1). Time intervals of fast in- : . .
. . fluctuations of steady-state soluti@around its mean value
crease controlled by rateare determined from the inequal- H (Fig. 3
Ity The results of the previous paragraph can be readily ap-
Asin(ot + 8) - G(t) > 0 (20)  Plied to the case when the amplitudeis not constant but
grows with time sufficiently slowly such that<Qs/e <<\
whereas time intervals of slow decrease controlled by gate ~0.2v; the overdot denotes the derivative with respect to
are determined from the opposite inequality time t. Then atv=0.01f we can safely treat the surplus
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0.9610 T . T T The kinetic Eq.(22) for surplus constituent concentration
G yields an exponential decay

0.9608 | . G=Bexf- u(t-tJ)] (24)

0.9606 att=t.. However, this by no means causes the actual surplus
< of defect concentratioc—c, to diminish exponentially. On
& the contrary, inserting the solutiq24) into the formula(8)

0.9604 with the use of definition(16) we easily obtain

B
0.9602 | . C=Co+ ;{EI[T exp(— x)] - Ea(7)}. (25
o'96010000 1 olo1 1 o|02 1 ol03 1 olo4 1005 e
ft 7= po expl- UgkT)(t-to) (26)

FIG. 3. Normalized solutios/A of the soft-ratchet kinetic Eq. denotes a unitless time, whereas

(18) at an essentially steady stage of its evolutisalid line). The x = U,/KT (27)
dashed line represents the mean valPA of the normalized

steady-state solution. Conditions used for calculations of curve gl€termines a unitless width of energy interval occupied by
from Fig. 2 are preserved. Time along the abscissa is normalized 1€ distribution of activation barriers for the process of co-
the oscillation period 1fl. hesion restoration. Finally

defect concentratio® as a time dependent quantity that ef- Ei(2) = f d_y exp— zy) (28)
fectively tracks amplitud@. There is every reason to believe 1Y

that b_oth the above requirements are fulfilled in resonant baﬁesignates the integral exponential functén.
exp§r|ment§ as fr_equency Sweeps tOWafd aresonance. Thus’Despite its namekE,(2) initially behaves logarithmically
the_ inequality G<e/e<<0.2v is maintained by the fac_t that as clearly seen in its analytic expansion fr 12°

typical sweeps around resonahtare unable to sustain the

rate|e|/e by more than 0.578. As for the inequality 0.0fL * o
=<v, it seems to be in line with our hypothesis of strong Ei(27=-C-In z-2 (-1)" | (29
inequality << v secured by many orders as given in Sec. Ill. n=1 n-n

We now inspect the regime of slow relaxation in the sub-, 00— 0,577 215 7 stands for the Euler-Mascheroni con-

system of intergrgin ruptured bond;. This regime occurs afteétant. In its final stagez> 1, however, use of the asymptotic
the surplus constituent concentrati@nhas been pumped to

ing9
some steady-state magnitu@and then the conditioning series
oscillating drive is drastically reduced at tinbet.. In this exp(- z){ ~ n!}
case, i.e., at>t, the strong inequalit> A holds, and the E,(2) = 1+ (- H"— (30
elastic subsystem serves only for probing the resonant fre- z n=1 z

quency, while its impact on the subsystem of ruptured bond&lmS out to be appropriate.
can be totally neglected. Thus, we omit the t&émthrough- We apply expansion€9) and (30) to the most plausible

out the kinetic Eq(18) and obtain case of exfy)>1 and approximate the difference
dGldt= - uG (22) E,[7exp(—x)]—-E;(7) controlling the temporal restoration

o ) ) ) of defect concentratior(25) by the following piecewise
bearing in mind that the regime of interest starts=dt with  formula:

G(t=t;,)=B. Here the quantityB is estimated to be
Eil 7exp(= x)] = Eq(7)

B:co{exp<vk?>—l] (23 x-T+7PlAd+Trexp—y) atr<é
X—C-Int+rexp—y) até&sr<¢er
where o, >0 stands for the maximum stress determined by = exl— exp(- x)]
the amplitude of stress oscillations under dynamical condi- —_— atéeX < T
tioning. Texp(-— x)
The approach just formulated is undoubtedly valid to de- (31

scribe the process of relaxation after tensile static condition-
ing wheno, should be understood as the positive end-point1€re the constanié =1.391 099 0 and, =0.928 630 6 are

stress. We expect it also could be applied to treat relaxatiof€termined as the solutions of transcendental equations
phenomena after an abrupt thermal disturbance provided —E+ 2/4=—-C—In ¢ (32)
is identified with some effective rupturating stress predeter- T h

mined by the absolute value of thermal shock. and
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- 30
—C-lng e = SR8 33
&
respectively. Equation&32) and (33) supply matching con-
ditions to ensure that the piecewise representat®in will 20
be a continuous function at points=¢_ and =&, exp(y), =
respectively. The larger the inequality éxp> 1, the longer k=)
becomes the interval of almost logarithmic time dependence
in formula (31).
Formulas(23), (25), and (31) substituted into the linear
relationship(11) between Young’s modulug and the con- ‘J
centration of defects allow us to analytically reproduce the J e
slow, nearly logarithmic recoveryincreas¢ of Young's 0 2000 4000 6000 8000
modulus Driving frequency (Hz)
E= (1 _@)E “E S e p<v0+) _ FIG. 4. Calculated resonance curve illustrating the relative po-
co/ | Cy kT sitions of the first three resonance peaks under longitudinal kine-

matic excitation for a rock bar.
kT kT, p<u_) -
ok CU+ U, Nl Ho€X kT (t-t) nance curve show the dependence of response amplRude
(taken on free end of the bae=L) on drive frequencyf
+k_TMO exp(— Yo U+>(t—tc)} (34) =wl/2m at very small drive amplitud®=7.6-10° L and
+ KT with the model parameters as assumed for the next figure.

Figure 5 shows typical hysteretic resonance curves calcu-
lated in the vicinity of the second resonant frequency at suc-
£ p(U°> &, p(U°+ U+> 35 cessively higher drive amplitudd3. In order to achieve re-

” .

over the very wide time interval

= ex T <t-t,<—ex peatable hysteresis each successive pair of curves was

Ho Ho calculated following two preliminary sweep calculations.

This type of recovery is experimentally observed by moni-Such curves are usually referred to as being conditidhed.
toring temporal variation of resonant frequency after the conArrows on the two highest curves indicate sweep directions.
ditioning drive has been removéd. The cycle time for an up plus down sweep over the fre-

The idea supporting the logarithmic recovery of Young'squency interval 3700—-4100 Hz was chosen to be 120 s.
modulus had earlier been advocated by Ten Cate, Smith andodel parameters were adopted to fit the experimental con-
Guyer?® although without identifying the proper time inter- ditions and the experimental data as observed by Ten Cate
val (35) where the logarithmic dependence holds and omitand Shankland in experiments on Berea sandstohrepar-
ting the small linear correctiofthe last term in parentheses ticular, the ratioE,/p=7.439- 16 m?/s? was estimated from
of expression(34)] to the leading logarithmic pattern. It is relationships(36), (12), and(13) with the second order fre-
interesting to note that logarithmic kinetics also have beemuency, bar length, temperature, and saturation as follows
attributed3go the process of moisture-induced aging in granuf,=3920 Hz, L=0.3 m, T=297 K, ands=0.25. The ratio
lar medias

5
V. FORCED LONGITUDINAL OSCILLATIONS 4 [ AN
OF SANDSTONE BARS: COMPUTERIZED
REPLICAS OF ACTUAL EXPERIMENTS / /
3 k

R/L

The vast majority of experimental results on forced lon-

gitudinal oscillations of sandstone bars use slow, stepwise < ////

10

n

NS/
/

frequency sweeps over one of the bar resonant
frequencies! > A rough estimation based on the linear
theory of kinematic excitation yields the fundamental fre- 1

guencies — ~—
2-1 — Y T
fa(l) = E 1=1,2,3,..), 36 3800 3850 3900 3950 4000
oll) 4L VEdlp ) (36) Driving frequency (Hz)

whereE, is the Young’s modulus in an unstrained, recovered F|G. 5. Conditioned resonance curvgs0,1,2,3,4,5 asuc-
sample given by formulal2) at 0=0, and attenuatiory is  cessively higher driving amplitudeB;=3.8(+0.25,0)10°8 L. Ar-
taken to be negligible. The relative positions of fundamentatows on the two highest curves indicate sweep directions. The ab-
frequencies at finite attenuation as calculated for slow upsolute value of sweep rate fi$f/dt|=400 Hz/min. Water saturation
ward frequency sweep are displayed in Fig. 4. Here the resas taken to bes=0.25.
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FIG. 6. Resonance curves at driving amplitudle 1.9-107 L. FIG. 7. Resonance curves at driving amplitudle 1.9-107 L.

Arrows indicate sweep directions. The absolute value of sweep ratghe absolute value of sweep rate is sloweddf/dt|=4 Hz/min.
is |df/dt|=400 Hz/min. The dashed line in Fig(e represents the ~Arrows indicate sweep directions. The dashed line in Fig) 7e-
unconditioned initial curve made on the upward sweep. The dashegplvable only in the magnified inset represents the unconditioned

line in Fig. 8b) represents the unconditioned initial curve made oninitial curve made on the upward sweep. The dashed line on Fig.
the downward sweep. 7(b) resolvable in the magnified inset represents the unconditioned

initial curve made on the downward sweep.

v/ p=1.851 nt/s characterizing internal friction was chosen rameters cosky=2300,r=4, a=2 were estimated to map the
from the best fit of low amplitude theoretical curééig. 5 e asymmetry of ex'perirﬁental resonance cuies.

to its experimental prototypévia comparison of quality fac- ~From Fig. 5 we clearly see that at each level of external
tors. The parametersuoexfUo/kT)=1s* and U./K  grive the effective width of resonance peak depends on the
=2525 K determining the character of slow relaxation weredirection of frequency sweep being narrower for upward
estimated in accordance with experimental measurements gfveep(i.e., from lower to higher frequencigghan for down-
temporal relaxation of response acceleration amplitude ayard sweei.e., from the higher to lower frequencjeds a
fixed frequency® and observations of recovering resonantresult we observe the hysteretic loops formed by upward and
frequency as a function of timé.Due to the rather slow downward curves both on their low and high-frequency
typical regimes of frequency sweep corresponding to actuadlopes. Historically this effect proved to be the first manifes-
experiments there is neither the experimental possibility notation of slow dynamic$ caused according to our theory by
the theoretical need to designate particular values for paramhe net creation of intergrain defects when the driving fre-
etersyy exp(—Wo/KT) and W, /k that are responsible for de- quency closely approaches to resonafi@, when the am-
fect creation kinetics. This is because above some criticablitude of alternating stress increasesd rather slow their
value depending on driving frequency the combinationannihilation when the driving frequency departs from reso-
v exd —(Wo+W,)/KT] gives rise to results indistinguishable nance (i.e., when the amplitude of alternating stress de-
from those obtained assuming the combination to be infinitecreasek It is worth noticing that in the case of conditioned
According to the estimations of previous section the condicurves considered above annihilation of intergrain defects
tion that the kinetics of defect creation could be treated apersists even when the driving frequency approaches reso-
practically instantaneou@.e., formally characterized by in- nance from far away until the amplitude of alternating stress
finite rate v) is fulfilled already provided the inequality overcomes some threshold above which defect creation pre-
0.01fy=< vy exgd —(Wp+W,)/KT] holds. The combination of vails.

parametersvE,/k coshn=275 K was chosen to quantita- Figures 6a) and &b) were calculated without any pre-
tively reproduce hysteretic phenomena in the sweep regimdaninary conditioning but with all model parameters for Fig.
typical of actual experiments.Finally, the nonlinearity pa- 5 preserved. The drive amplitude was chosen to be the same
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FIG. 8. Decay of response amplitude at driving amplitude FIG. 9. Growth of response amplitude at driving amplitude

D=1.9-107 L and fixed frequencyf=3825 Hz, lower than the D=1.9-107L and fixed frequencyfs=3900 Hz, higher than the
peak frequency af, =3846 Hz. In Fig. 8a) the sweep was stopped Peak frequency att,=3846 Hz. In Fig. €a) the sweep was stopped
while making a repeatable upward sweep. In Fith)&8he sweep While making a repeatable downward sweep. In Fig) the sweep
was stopped while making a repeatable downward sweep. was stopped while making a repeatable upward sweep.

as for two highest curves on Fig. 5. Thus Figagdemon- day all three curves become indistinguishable regardless of
strates three resonance curves obtained during the three sulirection of initial sweep. This theoretical result corroborates
cessive (upward-downward-upwajdfrequency sweeps be- an indirect experimental indication in fixed-frequency mea-
ginning with an upward sweep. The initial, unconditioned, surements of acceleration that a sweep time of a few days in
curve marked by the dashed line lies below the two subsecarefully controlled conditions would produce the same up
quent curves. Figure (B) demonstrates three resonanceand down resonance curves.
curves obtained during the three successidewnward- Apart from the reason mentioned earlier, measurements of
upward-downward frequency sweeps beginning with a temporal relaxation of acceleration amplitude at fixed fre-
downward sweep. The initial curve marked by the dashedjuency provide experimental documentation of how a rock
line lies above two subsequent curves. The curves marked lyradually loses memory of the highest str&iand they thus
the solid lines in Figs. @) and Gb) are practically repeatable elucidate the most interesting aspects of bond restoration ki-
and coincide with the respective two highest curves on Fignetics. Figures 8 and 9 show theoretical relaxation curves
5. All these results are in complete agreement with experithat correctly reproduce the main features of the
mental observations. The reason why the conditioned curve experiments2 While making a repeatable up or down reso-
does not coincide with its unconditionéiitial) counterpart nance curvgwith all model parameters the same as for the
in the sweep interval between the starting frequency and thivo highest curves of Fig.)3ve stopped the sweep at tihe
resonant frequency lies in the softer value of conditioneddrive still on) and calculated the amplitude of respoisas
Young’s modulus caused by an unrelaxed excess of defectsfunction of timet—ts. As in the experiments the simulated
created during the initial sweep. response amplitude gradually decreased when the stopping
As sweep rate decreases, the differences above becorfrequency was lower than the resonant frequeldygs. §a)
less pronounced thanks to the additional time for relaxatiorand 8b)] and increased when the stopping frequency was
at each spanning frequency. This point is illustrated in Figshigher [see Figs. @) and 9b)]. Moreover, after approxi-
7(a) and 7b) where the sweep rate was a hundred timesnately 10 min of relaxation the relaxation curves at a par-
slower than for Figs. @ and &b). Nevertheless, even in this ticular stopping frequency approached a long term level cor-
supposedly nonhysteretic case the memory of the highesésponding to the unconditioned part of the initial resonance
strain amplitude still persists. The latter result characterizedurve whether or not the upward or downward preceding
after its experimental detectibhas “perhaps surprising” can sweep was selected.
be readily explained by the long-term recovery of Young’s To reproduce another experimental facet of recovery
modulus dictated by the slow, almost logarithmic kinetics oftime!® we varied the previous simulations by stopping the
defect annihilationsee formulag34), (35), (25), and (31) sweep and simultaneously turning off the drive for 30 s with
from Sec. V. With still slower sweep times exceeding one the sweep moving downward=ig. 10@)] or upward[Fig.

174103-9



VAKHNENKO, VAKHNENKO, AND SHANKLAND PHYSICAL REVIEW B 71, 174103(2005

4 /ﬁ‘\ @ 0.015 !
[N\

/ = 0.010
2 ~ = /
i \ - / 2

1 0.005 //
/

5

10° RIL
W
N
-
/
/
7
)

0
0.000
5 b 0.0 04 0.8 1.2 1.6 20
/— \ (b) 10 DL
4 >~
N\ FIG. 11. Negative of the shift,—f, of peak frequency, from
NS its asymptotic valudy as a function of normalized driving ampli-

tude D/L for a hysteretic nonlinear materigturve 1 and for a
classical nonlinear material with=0 (curve 2.

10° R/L
N w
§
~
/,
I'd
4
Il
i3

At stopping frequencies below resonance response amplitude

1 drops closer to the firstrecoveredl upward-swept curve

o marked on Fig. 1&) by the dashed line. At stopping fre-
quencies above resonance response amplitude jumps closer

3800 3859 . 3900 3950 4000 to the first (recovered downward-swept curve marked in

Driving frequency (Hz) Fig. 10b) by the dashed line. A qualitative view of these

jumps comes from the indirect impact of strain on bar modu-

FIG. 10.(3) Resonance curves Obta'neq by a continuous Upwar41us through the concentration of defects. During the period of
sweep and subsequent sectionally continuous downward swee dme when the sweeb is anproaching and passing reson
During the downward sweep both drive and sweep were turned o P PP Ing passing ance

simultaneously for 30 s at fixed frequenty= 3825 Hz, lower than strain in_tensity becomes substantial causing a corresponding
the peak frequency & =3846 Hz.(b) Resonance curves obtained generation of defects, and the modulus decreases. This effect

by continuous downward sweep and subsequent sectionally conS Manifested as a shift of resonance curve downward in
tinuous upward sweep. During the upward sweep drive and sweefy€duency when the sweep has already passed resonance. If
were turned off simultaneously for 30 s at fixed frequerfgy the drive and sweep are then turned off, the strain vanishes
=3900 Hz, higher than the peak frequency,at3846 Hz. For both ~ causing progressive annihilation of defects so that modulus

pictures the driving amplitude and the absolute value of sweep ratficreases. As a consequence the part of resonance curve,
when being turned on wereD=1.9-10"L and |df/df tracked after drive and sweep have been resumed, moves

=400 Hz/min, respectively. back(i.e., upward in frequengyas memory of the high strain

is lost.
10(b)] from an already conditioned resonance. In a relatively Figure 11 compares the shifts of resonant frequency as
short time(tens of secondsthe memory of the high strain functions of driving amplitude at two different values of di-
amplitude rock had experienced at resonance diminished fdatation parametev while other parameters were kept the
more quickly than when the drive was left on. According tosame as in Fig. 5. Thus curve 1 calculated Bf/k coshy
the kinetic Eq.(7) this distinction finds its rational explana- =275 K, for which strain-induced feedback between the
tion in a more favorable regime for defect annihilation underslow and fast subsystems is substantial, demonstrates the al-
zero stresgr=0 in comparison with the regime governed by most linear dependence typical of materials with nonclassical
the oscillating stress of a considerable amplitytteough  nonlinear response, i.e., materials that possess the basic fea-
lesser than that at resonaicEigures 10a) and 1@b) were  tures of slow dynamics. In contrast, curve 2 calculated at
prepared using the same model parameters as for Fig. 50, when strain-induced excitation of the slow subsystem is
Also, drive amplitude and sweep ratexcept the short time absent and, hence, the mutual feedback between the slow and
interval of drive and sweep stoppingere set to the same the fast subsystems is totally broken, demonstrates the al-
values as for the two highest curves in Fig. 5. Figuréal0 most quadratic dependence typical of materials with classical
displays the resonance curves obtained by the continuoumonlinear respons&.Closer inspection indicates that curve 1
sweep in upward followed by a sectionally continuous sweegan be approximated by the linear and the quadratic terms,
downward. Figure 1®) shows the complementary curves which are in line with the second-order polynomial fit of
obtained by a continuous sweep downward followed by a¥oung’s modulus extracted by Smith and Ten Cate from the
sectionally continuous sweep upward. Effects of quick re-experiments?
covery (increasg of bar modulusE while sweep and drive Figure 12 shows the gradual recovery of resonant fre-
were stopped are clearly seen as discontinuities in the curveguencyf, to its maximum limiting value after the bar was
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°g1o(T ) FIG. 13. The set of successive resonance curves obtained by

means of back and forth sweeps around the recovering resonance
after the high-amplitude conditioning drive was stopped. The arrow
indicates the asymptotic resonant frequency. Water saturation, am-
plitude of probing drive, and absolute value of sweep ratesare
=0.25,D=1.14-10° L, and|df/dt|=400 Hz/min.

FIG. 12. Time-dependent recovery of peak frequefcyo its
asymptotic valuefy. Curvesj=1,2,3 correspond to successively
higher saturations;=0.052j - 1). The frequency shift, -, is nor-
malized by both the asymptotic frequenigyand the effective con-

ditioning straineqs. Hereeqg is defined as the value of dimension- ) . ) . o
less response amplitud®/L which had been attained during high- ration between neighboring curves progressively diminishes
amplitude conditioning tuned to the frequency of resonance. with successive sweeps. The amplitude of the probing drive
was taken to be as small &-=1.14-10° L.
subjected to high amplitude conditioning and then condition- ~ Another interesting experimental observation is the dra-
ing was stopped. Conditioning was performed by multiplematic suppression of hysteresis with decreasing water
short-range sweeps over the resonance at the drive level usegturatior!. According to our theory this effect can be under-
to obtain the third paij=3) of curves in Fig. 5. We have stood by noting that equilibrium defect concentration in an
plotted three different curves corresponding to three differentecovered sample, (13) drops more than three times in
saturations with all other model parameters used for Fig. nagnitude when water saturation decreases fse1.25 to
retained. The net frequency shift-f, consists of two dif- s=0.05. Indeed, it is precisely the equilibrium defect concen-
ferent parts, namel§i) the expected dynamic shift caused by tration (13) that controls variation of elastic modul$1)
strain nonlinearity at high levels of excitatfnand (i) the  through strain-induced variation of nonequilibrium defect
shift caused by the slow subsystem. However, only the se@concentratiorc as follows from the kinetic Eq(7) and for-
ond part can actually be observed during the recovery promulas (8)—(10). This conclusion has been confirmed by di-
cess because the first vanishes almost instantaneously esct computation with saturatios=0.05 being the only
switching off the high amplitude drive. Hence, the visible model parameter changed from the parameters adopted for
recovery should be governed by the slow kinetics of restorFig. 5. The results shown in Fig. 14 contrast in hysteresis
ing intergrain cohesive bonds. From Fig. 12 we clearly seavith those of Fig. 5. Figure 14 also demonstrates a substan-
the very wide time interval k@<t-t.<100Q, of logarith-

mic recovery of resonant frequendy, in complete agree- 4
ment with experimental resulsand analytical calculations 5 \
summarized by formulag34) and(35) from Sec. IV. Here, 3 N

is the moment when conditioning was switched off apd

. . . I / N \
=1 s is the time scaling constant. /
g \ \

The process of low amplitude probing of recovering reso- =

nant frequency to determirfe as a function of time follows © / 2 \ &

the same procedure either experimentally or theoretically. 2 =
After the high-amplitude conditioning drive is stopped, a é//f \\\\
low-amplitude drive remains on to repeatedly sweep the 1 // // ~—
resonance curve and monitor the moving position of resonant | 0

frequencyf,. Figure 13 illustrates the set of successive reso- 0 — | ————=

5300 5350 5400 5450 5500

nance curves corresponding to the time-dependent recovery
of resonant frequency given by curve 3 of Fig. 12. At each
successive sweep the curves shift upward in frequency and FiG. 14. Conditioned resonance cunjes0,1,2,3,4 asucces-
gradually approach an asymptotic curve with the asymptotigively higher driving amplitude®;=3.8(j +0.255)10°® L. Arrows
resonant frequenciy, indicated by an arrow. Only a fraction on the two highest curves indicate sweep directions. The absolute
of the successive resonance curves calculated over the tinvalue of sweep rate iglf/dtj=400 Hz/min, and water saturation is
interval t—t,>1 s are clearly distinguishable because sepas=0.05.

Driving frequency (Hz)
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FIG. 15. Quality factorQ as a function of water saturatian 28
The fixed model parameters were assumed to be the same as fc
Fig. 5.
tial increase of resonant frequengyin comparison with Fig.
5 as a result of the monotonic growth of Young’s modulus <
with decreasing saturatigeeen already at=0 from expres- T 26F .

6

sion (12) combined with formula13)]. Due to this fact the @
interval of frequency sweep for producing Fig. 14 was
shifted to 5200—-5600 Hz.

In addition, we have observed a monotonic decrease in
quality factorQ (defined here as resonant frequerfeydi- 54
vided by the resonance curve width\&/2 of peak height at 3896 3831 3836
low-amplitude driveé with increase of water saturatios -

This trend is well-documented in numerous experimerits. Driving frequency (Hz)
In the present theory it derives from the drop of resonant
frequencyf, with water saturatiors as seen from the low-

FIG. 16. Manifestation of end-point memory in dynamic re-

: . . . B _ sponse with a multiply-reversed frequency protocol. Model param-
amplitude analytical estimation at=0 and y=0 when the eters, including the absolute value of sweep rate, coincide with

expressions(36), (12), and (13) are combined. Figure 15 those for the two highest resonance curves in Fig. 5. The range of
illustrates the theoretical dependence of quality faQoon  frequency sweep is on the low-frequency slopes of the two highest
saturations with all model parameters except the variable resonance curves from Fig. B.is the response amplitude taken at

as given in Fig. 5. the free end of the bar.
It is worth noticing that the quantitative character of the-

oretical results depends substantially on the choice of any

particular model parameter at fixed other parameftentice, There is a further remark about numerical simulations.
for example, Figs. 5 and 14 distinguished only by differing\when discretizing the coordinate variable in the equation for
water saturations Nevertheless, there exist at least two pos-the elastic subsystem the best convergence of the computa-
sibilities to change several model parameters simultaneouslyynq) procedure is achieved by adjusting the mesh width in
without visible variations in characters of resonance curvesg -, 5 way that each node of excited standing wave has to be

The most evident set of such parameters are three nonlinegi,giigneqd in the closest possible vicinity to some discrete
ity parameters, r, and coshy that at low level strains may coordinate site

be replaced by only two of their combinatiors®e expansion
(6)]. Another possibility to obtain a resemblance in reso-
nance curves might be revealed empirically by simultaneous

variation of parameters cosf v, andU, during trial simu- V1. DYNAMICAL REALIZATION OF END-POINT

lations (for example, a decrease of costtould be comple- MEMORY: THEORETICAL PREDICTIONS

mented by a concordant increasewfnd decrease di,

given the sumUy+U, remains fixel However, analyzing Figures 5-7 and 14 demonstrate a dynamical realization

other facets of slow dynamics allows one in principle to ruleof hysteretic phenomena in the case of only two reversing
out such an ambiguity. Still, the main obstacle to the reliablepoints in the driving frequency protocol. The question arises
choice of all model parameters is caused by the lack of comwhether an effect similar to the end-poidiscret¢ memory
prehensive experimental data that ought to be collected othat is observed in quasistatic experiments with a multiply-
the same specimefor on the set of equivalent specimgns reversed loading-unloading proto®8t!-33 could also be
with the use of all already approbated experimental apmanifested in resonating bar experiments with a multiply-
proaches both dynamic and static. reversed frequency protocol.
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We studied this problem theoretically and show the result@dvantage, namely, the ability to reproduce a remarkably
in Fig. 16, where the model parameters including the absowide class of experimental results by means of a restricted
lute value of sweep rate coincide with those of the two high-number of physical parameters. The significant points of our
est resonance curves in Fig. 5, while the sweep range is takenodel are specified through the coupling between the sub-
within the low-frequency slopes of these curves. End-poinsystems on the one hand and the nontritiiel., soft-ratchet
memory, defined here as the memory of the previous maxikinetics governing the particular constituent concentration of
mum amplitude of alternating stress, is seen to be proruptured bonds on the other. This coupling ensures that the
nounced in the form of small loops inside the big loop. Theelastic subsystem triggers evolution of the subsystem of rup-
starting and final points of each small loop in Fig. 16 coin-tured bonds by changing the conditions of their equilibrium,
cide, which is the typical manifestation of end-point memory.while the subsystem of ruptured bonds affects the elastic
A small closed loop can be produced anywhere on the unsubsystem by reducing Young’s modulus in proportion to the
conditioned(dashed curve (not shown, but the situation on prevailing concentration of defects. Due to the substantial
the conditioned up-going curve looks more complicated.excess of rupture rate over restoration rate the subsystem of
Thus, the closeness of an extremely small loop can beuptured bonds breaks the symmetry of dynamical response
achieved only on the upper part of the conditioned up-goingo an alternating external drive in the entire system. This
curve. The reason for such behavior is the existence of asymmetry produces the majority of nontrivial nonlinear and
threshold stress amplitudelepending on previous history relaxation effects in sedimentary rocks. Nevertheless, we
that must be surmounted in order for the kinetics of the slonmust bear in mind that the logarithmic recovery of resonant
subsystem to be switched from defect annihilation at lowefrequency could not be understood without additionally in-
amplitudes to defect creation at higher amplitudes. This revoking a proper distribution of restoration rates within a con-
striction can be substantially relaxed provided the linear sizesiderable but finite interval. Otherwise, recovery kinetics
of the inner loop becomes comparable with that of the bigwould inevitably shrink into purely exponential decay when
outer loop. Direct calculationéot shown confirm the ear- the width of the rate distribution tends to zero.
lier statement, and the chance to find the inner loop being It is necessary to say that despite its success, this model
closed increases progressively with the growth of its sizecould be further improved to reproduce the preferable gen-
irrespective of whether the inner loop was produced on arration of odd harmonics as seen in experiments at low ex-
up-going or on a down-going curve of the big outer loop. citation levels?38 Following Kadish, Johnson, and
Zinszne?® this modification could be done by introducing
nonlinear in place of linear attenuation. Unfortunately, the
type of dissipative nonlinearity cannot be strictly established
from the experiment® and even the simplest linear form of
internal attenuation adopted in the present research might

To summarize, we have performed a systematic analyticactually originate from several fundamentally different
and computational simulation of various nonlinear and relaxphysical mechanisnf$. Thus, detailed analysis of feasible
ation phenomena observed experimentally in the nonclassionlinear attenuations goes beyond the scope of the present
cal resonant response of bar-shaped sedimentary rocks whgivestigation.
excited by longitudinal standing waves. In particular, we  Still, even within the framework of the present formalism
have managed to describe hysteretic behavior of resonaneg have been able to predict an unusual hysteresis with end-
curves, almost linear shift of resonant frequency as a funcpoint (discret¢ memory in an essentially dynamical realiza-
tion of driving amplitude, evolution of response amplitudetion.
after temporarily stopping a frequency sweep, jumps of reso- As a final remark, the term “slow subsysteis used as a
nance curves after temporarily interrupting the external drivesynonym for the notion “subsystem of ruptured intergrain
(i.e., when sweep and drive were paused simultanepuslycohesive bonds.” At first sight, this term seems to be incor-
suppression of hysteresis at small water saturations, and thect in that the soft-ratchet kinetic Ef) contains two sub-
decrease of elastic modulus and quality factor with increasestantially different rates, one of whidthe bond rupture raje
saturation. In doing so we have explored both qualitativelymay be comparable to or even exceeds the external drive
and quantitatively the consequences of two coupled subfrequency. However, it is precisely the fast rate of bond rup-
systems in which mesoscopic defects in a field of internature that ties defect concentrations to strain amplitude when
stress are created and removed at different rates in responggs amplitude is growing. As a result, the effective rate of
to an external drive. concentration growth is determined by the slow increase of

In our treatment the subsystems are as follofsa sub-  strain amplitude in an extremely slow frequency sweep. On
system of longitudinal displacements afiid a subsystem of the other hand, when strain amplitude decreases, then only
ruptured intergrain cohesive bonds. This is in apparent conthe slow mechanism of bond restoration is able to work.
trast with other two-subsystem approacie¥ where the Thus, the term slow subsystem appears to be reasonable be-
second subsystem is associated with auxiliary hysteretic ele&ause typical times responsible for the steady evolution of
ments. Considering our approach as an alternative to the atlefect concentration turn out to be very large in comparison
ready known theoriéé-3"we would emphasize its principal with the period of alternating strain.

VII. CONCLUSION
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